:
s
=
2

%
€
A.\
s
#
5 |
s i
o
-2 FRra
|
.
»

KENT ON-LINE SYSTEM

Document : KOS/ALL/2

Sub—systém writer's manual

.

P,J. Brown

University of Kent at Canterbury
December 1970

L]

KNLS 0/1 KOS/ANA
TABLE OF CONTENTS
Introduction
Chapter 1 Hardware considerations
1l Basic features
1.2 Use of storage by KOS
1.3 Notes on addressing
Tods How to write a common onrogram - a summary
1.e5 Logical errors
Chapter 2 Interface with KOS
2.1 COMMAN and UTTILIT
242 Specialized utility programs
243 Interfoce with UTILIT
2.4 Using UTILIT routines
2eD Communicating with MCP
2,6 Entering ond exiting from a sub-system
2.6.,1 Messoges on entry and exit
2.7 Naming sub-systems
2.8 Looking at MCP fixed locations
Chapter 3 Use of extras
Bl Extras
Fe 2 Data and results devices
3.5 User's workspace
3.3,1 BRorrowing user's workspace
3.3.,2 Returning user's workspace
3els 8peoialized utility programs
3.5 Ordering requests for extras
3,6 Running in executive mode
Chapter 4 Input and output
L1 Introduction
4,2 Character codes
L.3 Output
L3 UTILIT routines for output
4,3,2 Example of output instructions
L Input
beylegt Input of commands
4,L,2 Input of data
I Questions—and-answers
L.4ol Example of use of UCQLINE
Loli,5 Input of characters from the buffer
4.5 Identity of I/0 devices

KNL5 0/2
Chapter 5 Decoding of input
Bl Types of table entry
B Attt Conditional matches
575 B2 Unconditional matches
5.1.3 Non-matches
h.2 Examples of decode tables
Chapter 6 Breaks
6.1 Routines for breaks
6.2 What to do at o break
6.3 VWhen breaks must be inhibited
6.4 When breaks must be allowed
8.5 Changing break status
Chapter 7 Documentation
Chapter 8 Debugging

Appendix A

List of.publigfvalues

List of UTILIT routines

Appendix B List of
Appendix C List of EXElNs and MCP fixed locations
Appendix D List of decode table entries

Appendix F

"A sample sub-gystem

The program in NEAT
Usage at a console

Sulickysten Jpedtan 'y plofsary

KOS/AAA

0/3

Introduction

One of the principal aims of KOS is that it should
be open-ended, i.e., it should be as easy as possible for
users to add their own sub-systems. This manual is for users
who wish to do this. Obviously, before attempting to write
a sub-system, the user must be familiar with using KOS, with
its terminology and with the general principles that govern
its operation. It is also necessary to know NEAT.

,

KNLL 1/1 KOS/AAA

Chapter 1 Hardware considerations

1.1 Basic features

KOS consists of a master control program (#CP) which controls
a number of slaves, one slave for each KO3 job stream, 8lave programs
run under a Eﬂggigl hardware mode called slave mode. This is similar to
the normal mode of working (executive modgjuéxcept that addressing is
performed differently and there is protection against slaves interfering
with one another, The hardware is described in full detail in Volume 1,
Part 3, Section 3 of the 4100 Marual, but the user need not concern himself
with all the details of this, since some of it is concerned with the
scheduling aspects which are performed by MCP,

The hardware contains a very useful facility, called the commen
program feature, which allows a single slave program to be shared by any
number of slaves, KOS sub-systems sheuld be written as common programs,
They must be coded in NEAT since ocurrently there is no other way of produc=-
ing a common program,

The common program hardware works as follows, ILach slave has
its storage area which is described by a base and range. Every time an
address reference is made by a common program the base is automatically
added, Thus if a common program executes the instruction

LD 200

when the value of the base is 8192, then it will load the slave's relative
location 200, which is really location 8392, Similarly the same program
could be used with another slave whose base was 4096, In this case the
address would be taken as 4296, All variables associated with & common
program must be in the slave's storage area, since they will in general

have different values for each slave currently using the common program.

KOS takes care of setting up slaves, fixing the bases, ete,, and sub-systems
will not be aware of which slave they are running.

The range that the hardware associates with a slave is used te
check that the slave does not upset anything outside its own storage area,
Each address is compared with the range and if it is greater the slave is
trapped (see Section 1,5).

KNLL 1/2 KOS/AAA

Common programs are distinguished from ordinary slave mode
programs by the fact that the S-register has bit 17 set, This iact
should not worry the sub-system writer since the sub-system will always
be entered with bit 17 of S set and none of the usual N-AT instructions will
upset it.

Ordinary slave mode programs have bit 17 of S zero. They reside
in the slave's storage area and thus belong to one and only one slave; the
base is automatically added to S in the same way as for addresses. Other-
wise they are similar to common mode programs., Ordinary slave mode is
used for such things as compiled code.

1.2 __Use of storage by XOS

KOS divides the slave storage area into two parts:

(a) The slave fixed locations., The first 800 or so locations, which

SN AP et SN Py

are reserved for fixed pu: purposes,

(v) The user's workspace, The remaining slave storage, which is
allocated dynamically for files and for sub-systems ithen they need
extra storage (e.g. for large arrays, stacks, lists, etc.).

Of the slave fixed locations, locations 100-127 and 300-499 are
reserved for sub-systems to use as they nlease, These are called the
sub-system fixed locations., Normally 300-499 are usec for variables and
100-127 are reserved for extra-codes or for some other special requirement,
Thus the variables for a sub-system are normally declared as follows:-

DATA
LOCATZ 300

Normally a common program uses constants as well as variables,
Although each slave must have its own copy of the variables, since these
will normally diffeer for each slave, it is clearly wasteful for each slave
to have its own copy of the constants, which will, of course, have the same
value for each slave,

To allow for the sharing of constants (i.e. common data) the

KL 1/3 KOS/AAA

hardware provides the following feature: if bit 21 is one in an address
reference, the slave base is not added on (nor the range chec! ced) but the
address is taken as absolute. To facilitate this KOS sets a fixed location
(called £UBIT21) in each slave area to contain the value vhere bit 21 is one
and the remaining bits zero, Hence if a commnon program contains the instr-
uctions

LDR £UBIT21
LD:M 456

the value of absolute address 456 will be loaded, Note that it is necess-
ary to use modified (ar possibly indirect) addressing when referring to
absolute addresses since direct addressing only allows for 15 bits.

Sub-system writers should not construct their owm bit 21 nor place
bit 21 in constants, but should slways use the fixed location £UBIT21, This
is because LUBIT21 sometimes contains an extra adjustacnt to make sub=systems
run under DES-2,

As an example, assume that a common program wishes to use a constant
called PI, PI would be declared under CONST or ICONST in the ordinary manner,
As a result of this one copy of PI would be assembled into an absolute loc=~
ation in the program area in the normal way. Vhen a reference was made to
PI it would be done thus

LDR £LUBIT21
FL:M PI

A straight reference to PI, such as
FL P1

would be incorrect since the hardware would add the slave base to the
absolute address of PI,

In this manual the term absolute will be used to describe a
pointer or address that contains £UBIT21 and refers to the CO¥ST area;
the term relative will describe an address or pointer that refers to the
slave's storage area, since the base is added to such pointers or addresses
by the hardware. In general, however, the word "relative" will normally
be omitted and when "pointer" or "address" are used they should be under-
stood to be relative,

1:35 Notes en addressing

(a) The contents of absolute addresses, referenced using £UBIT21, may
only be looked at, The contents must : not . be changed, If an attempt
is made to do so the hardware forces a trap.

(b) V-literals, if used, must be treated exactly as constants, i,e.,
£LUBIT21 must be used,

KLY 1/l KOS/AMA

(¢) Signposts and interchapter jumps require special action and it
is usually best not to use them,

(a) If variables are to have initial values, or if for soie reason it
is desired to set up & constant in the slave area, the velues must be
set up dynamically at the start of the progran,

1.4 How to write 2 common program = a Summary

Common programs are very easy to write as they differ so little
from ordinary NEAT programs., Simply collect variable declarations to-
gether and add

LOCATT 300
after DATA, and use £UBIT21 when referring to constants and V-literals,

Appendix E contains an example of a simple X053 sub-system,
which is, of course, a common program,

1.5 .. Logical errors

Some faults in slave programs cause 2 trap thereby stonping
execution of that slave, Such faults include an address (or an s-value
in an ordinary slave mode program) out of range, the issuing of an I/0
instruction or an attempt to change bit 19 of the C-register. A trap
is called a logical error in the slave, On encountering a logical error,
MCP prints an appropriate message on the control teleprinter and stops.

The subject of debugging is covered in Chapter 8,

2/1

Chapter 2 Interface with KOS

2.1 COMMAN and UTILIT

In addition to any common programs that are in use
as a result of a sub-system being called, KOS contains two
common programs for the basic control of the system; these
two programs are always in core. They are

(a) COMMAN. This is roughly the KOS equivalent
of BATCH. It recognizes and decodes commands.

In addition it actually executes all KOS commands
that are not part of sub-sytems.

(b) UTILIT. This is a collection of routines
(called UTILIT routines) that are needed by sub-
systems (and by COMMAN)including I/0, storage
allocation, command decoding, etc. UTILIT roughly

" corresponds to the routines of NICE that are entered
through fixed locations (e.g. device routines,
€OUTNAME, £ASSEMBLE, etc.).

2.2 Specialized utility programs

In addition to UTILIT, KOS has available some
specialized utility programs which are not always in core but
may be asked for by any sub-system that needs them. Currently
there is only one specialized utility program, namely a floating
point package called UTFLOT.

Specialized utility programs will make use of some
of the sub-system fixed locations, and will thus cut down the
number that is available to the sub-system itself.

2.3 Interface with UTILIT

All UTILIT routines are called by a JIL to a slave
fixed location. In addition to the slave fixed locations used
for its entry points, UTILIT maintains certain quantities,
called the public values, in slave fixed locations in order that
sub-systems may examine them. Examples of public values are
buffer pointers, line counts of I/O, EUBIT21, etc.

Since the usage of slave fixed locations is liable
to change, LOCATEd symbolic names must be used for all slave
fixed locations. This includes the sub-systems own variables
in addition to the locations associated with UTILIT.

2/2

The names of the UTILIT fixed locations all begin
with U. If the usage is concerned with I/O the second letter
indicates the device concerned as follows

C means the command device.
M means the message device.
D means the data device.

R means the results device.

Thus the routine that outputs a character on the message device
is called £UMCHAR.

The UTILIT routines and public values are described,
under the various functional classifications, in the Chapters
that follow. Summaries and tables of where names are LOCATEd
are given in Apvendices A and B.

2.4 Using UTILIT routines

Several of the UTILIT routines have parameters.
These are passed in R and/or M. It is the usual convention
that R is used for pointers and M for individual characters.
Numbers and S-values may be in either R or M. 1In some cases
UTILIT automatically adds bit 21 to R. Several UTILIT routines
also produce results. These are returned in R and/or M as
appropriate.

Some UTILIT routines have several exits. The routine
£UDLINE (get a line of data), for example, returns to the
instruction following the point of call in the error case (when
there is no data left) and skips one (full-word) instruction
in the normal case. A number of UTILIT routines, therefore,
are said to have N exits; the first being called exit 1, the
second exit 2, etc., where exit j means j full words beyond the
calling instruction. When a routine is said, simply, to return,
this means it uses the last exit. T

The same conventions normally apply to EXENs (g.v.)
and routines in specialized utility programs,

A number of UTILIT routines that have pointers as
parameters (passed in R) assume that the pointer is always
absolute (i.e. the item »ointed at - for instance, a message or
a table - is in the CONST area), and hence automatically add
bit 21 to R to save the sub-system the trouble of doing so.

KNL5 2/3

If, in some special case, the sub-system wishes to supply a relative pointer
as parameter to one of these routines, it must subtract £UBIT21 from R.

2,5 Communicating with MCP

In some cases it is necessary for a sub-system to communicate .
directly with the master control program, This is done by the EXEN instruction
in the hardware, which forces a trap, The address field of the EXEN indicat@s
the operation required. The permissible operands are all LOCATEd since their
numerical values are liable to change, The EXENs that are available are
described in subsequent chapters and a complete table of them is given in
Appendix C, One EXEN that is useful in debugging is £LOGERR, which forces a
logical error and sets up information for a post-mortem dump. Due to a defect
in NEAT, EXENs have to be written as N:750/g§ggdgggg in the address field,

(See example in Section 3,4).

EXENs may have parameters, results, multiple exits,etc., just as
UTILIT routines,

2,6 __Entering and exiting from a sub-system

A sub-system is entered by typing its name when in command status
in KOS, The name is normally followed by a tofrom (see KOS User's Manual) to
specify the data and results devices to be used, COMMAN contains a table of
all the sub-system names that it recognizes as commands in themselves (e.g.
BASIC, DESK), If the writer of a sub-system wishes its name to be added to
this table, he should contact the writer of this manual. Otherwise the sub-
system can always be entered using the ENTER command.

The first three instructions of each sub-system are entry points
from COMMAN, They are as follows:

(1) Initial entry. When COMMAN initially enters a sub=-system
it enters it at its first instruction. The input buffer
pointer (LUIBFPT, see Chapter L) is set to point at the
first character of the argument list of the entry command.

(2) Break entry. Then a break is accepted when within a sub-
system, COMMAN enters the sub-system at its second in-
struction, Tor a description of how sub-systems can
arrange to allow or inhibit breaks, see Chapter 6.

2/4

(3) Get-off entry. If a sub-system is entered at
its third instruction it must immediately release
all its resources and surrender control to COMMAN,

The first instruction of a sub-gystem (i.e. the
initial entry point) must always be a "JF 4" instruction.
This is used as a marker to indicate to the ENTER command
that the program is indeed a KOS sub-system.

Thus a sub-system might commence as follows:-

CODE

JF 4

JF *BREAK
JF * ABORT

An exit is made from a sub-gsystem by obeying the instruction

g EUEXIT

2:6,1 Messages on entry and exit

N sub-system should output an appropriate message
when it is successfully entered initially and again when it
exits. The introductory message should identify the sub=-system
(including which version it is) and make it clear it is starting
from scratch. Typical introductory messages might be "DESK
CALCULATOR (VERSION KNL3A) READY TO START", "I AM A CHESS
PLAYING MACHINE (VERSION KNL1B). TO START THE GAME"
Typical messages on exit might be: “EXIT FROM DESK CALCULATOR",
"GAME TERMINATED". The introductory message should normally
be output when all the basic extras have been borrowed
(see Section 3.5) and the exit message immediately before going
to £UEXIT.

KNL5 2/5 KOS/AAA

2.7 Naming syb-systems

Any identifier of up to eight characters can be used as a
sub-system name, except thet names beginning with "UT" are reserved for
sub-modules and specialized utility programs. I a name begins with "UT",
KOS does not update its count of job steps (see "How to run KOS") when it
is entered.

Hence if a sub-system consists of several modules which are
loaded separstely then the name of the main module should not begin with
"UT" but the names of the remaining modules should.

When a sub-system is to be used it should be entered by means
of the ENTER command; the only exceptiomnsto this are popular sub-systems like
BASIC whose names have been added teo a special table in COMMAN to make them
global KOS commands,

2.8Looking at MCP fixed locations

o

Some very specialized sub-systems, particularly those concerned
with timing or monitoring, mey wish to look at MCP and the fixed locations of
the world it operates in (i.e. a DES-2 slave or the DES-1 or T30C system).
These fixed locations must be addressed using a public value called £LUKBIT21
in an exactly similar manner to the way £UBIT21 is used to address the CONST
area, Usually L£UKBIT21 and £UBIT21 will have identical values, but differences
are possible in the DIES-2 environment,

Lists of MCP fixed locations are not pubiicized, but they can be
obtained from the author,

3/1

Chapter 2 Use of extras

3.1 Extras

Sub-systems have available to them a collection of
extras, i.e. supplementary facilities for those sub-systems
that need them. The extras that are available are: results
and data devices, blocks of contiguous storage taken from the
user's workspace, and specialized utility programs. When a
sub-system is entered it has no extras; the extras that are
needed can be borrowed dynamically. They must, however, always
be returned before the sub-sytem exits, irrespective of how

the exit is made. This Chapter describes how extras are borrowed
and returned.

3.2 Data and results devices

Most entry commands and some suvnplementary commands
allow a tofrom as the last argument. There is a routine in
UTILIT called £USETDEV to decode tofroms (including null tofroms)
and allocate the necessary I/0 devices. EUSETDEV must be called
with EUIRFPT pointina at the tofrom (see Section 4.4).

This will always be the case on entry to a sub-system provided
that there is no argument between the sub=-system name and the
tofrom and provided no input is requested (e.g. by a question-
and-answer) before £USETDEV is called. E£USETDEV has a
parameter in M, which has two possible values

(1) =zero means get results device only.
(2) two means get both data and results devices.

EUSETDEV has two exits. If the tofrom is syntactically
incorrect, or if the required devices are not available,
£USETDEV allocates no devices to the sub-system, outputs
the arpropriate messages and uses exit 1. Otherwise it
allocates the required devices, sets the public values
describing them (see Section 4.4.2 and Appendix A) and uses
exit 2.

It is possible to call £USETDEV several times
within a sub-system (e.g. for the entry command and then for
subsequent supplementary commands), but before an attempt is
made to borrow a new data/results device the previous one(s)
must have been returned.

3/2

€USETDEV should be called with breaks allowed (since
the user may be made to wait for a device) and it always
returns with them allowed.

The data and/or results devices are returned
by callinoc £UDREND. £UDREND performs the following actions:

(a) it clears the message buffer (see Section 4.3.1).

‘(b) if a results device is currently borrowed,
it clears its buffer, closes the device
(see User's Manual) and returns it.

(c) if a data device is currently borrowed, it
closes it and returns it.

It is quite legal to call LUDREND as a safety measure even
if no devices turn out to be currently borrowed.

- EUDREND is automatically called by UTILIT whenever
a break occurs or when either of the routines LUEXIT or
fUCLINE (g.v.) is called; this means, in fact, that the data
and results devices are automatically recturned whenever they
need to be, namely on exit from a sub-system or when a new
command is input, and so it is not often necessary for a sub-
system to call E£UDREND explicitly.

3.3. User's workspace

The routines ELURSPACE and E£URSPACE are used for
borrowina and returnine blocks of storace from the user's
workspace.

LURSPACE has one parameter (in R) and two exits.
It returns a result in R,

E£URSPACE has one parameter (in R), only one exit
and no result.

Breaks must be inhibited when either routine is called,
and the routines will leave them inhibited on return. It is
possible to borrow any number of blccks of workspace of any
size, subject to available space.

3/3

3.3.1 Borrowing user's workspace

fUBSPACE is used to borrow user's workspace. The
parameter specifies the size of the block required. This must

exceed zero.

If the requested amount of workspace is available,
CUBSPACE allocates it to the sub-system and uses exit 2. The
result in R is a pointer to a block of workspace of the size
requested or perhaps one word larger. The second word of the
blocck will contain its actual total size.

If there is not enough room, £UBSPACE uses exit 1.
In this case the result in R is a pointer to the largest
available block (with its size in the second word). The
block is not, however, allocated to the sub-system. Hence to obtain
the largest available block of workspace, the following
instructions should be executed:

LDR:L 32767 ‘ Impossibly larce request.
JIL £UBSPACE

JF 2 Not available.

JF 6 Is availabhle!l
LDR:M 1 Load size of laraest

available block.
JIL £UBSPACE
N:750/£LOGERR Should be impossible.
Preserve R, etc.

If a sub-system is such that it must have a certain
amount of workspace, there is a UTILIT routine call E£UNOROOM
which is useful for the case when that workspace is not available.
E£UNOROOM outputs the message

NOT ENOUGH WORKSPACE -~ BREAK

and then enters the sub-system exactly as if a break had
occurred. This applies even if breaks are 1nh1b1ted. Thus
a calling sequence for £UBSPACE might be

LDR:L 1¢3
JIL £UBSPACE Ask for 1@ words.
JI £UNOROOM Not available.

The internal workinags of £UBSPACE have been designed
to minimize the fragmentation of user's workspace.

3/4

3:3.2 Returning user's workspace

fURSPACE is used to return user's workspace. The
parameter in R must point to the block to be returned. The
length of the block must be in its second word. (Hence when
workspace is used it is best to leave the first two words
intact.) All workspace must be returned before exiting from
a sub-system.

3.4 Specialized utilitv nrograms

Specialized utility programs are borrowed and
returned by communicating directly with MCP by means of the
EXENs E£RORPRG and ERETPRG,

To borrow a program £BORPRG is used. It has two
exits. The parameter in R is an absolute pointer to the
name of the program to be borrowed. However, bit 21 should
not be included in R since it is added automatically. The
name should be stored in two words of packed internal code
characters, padded with blanks on the end. If the program
is not available, £BORPRG uses exit 1. If it is available,
£BORPRG uses exit 2 and gives the S-value of the start of the
program (with bit 17 one) as the result in M. In either
case breaks are inhibited on return, and the contents of R
are not changed from their calling value.

To cater for the error exit from £BORPRG, there is
a UTILIT routine E£UNOPRG, which outputs the message

(NOwW)

brogram name NOT AVAILABLE (THIS SESSION)

and goes to EUEXIT. However, EUNOPRG shculd only be used
when there is no workspace and no other programs to be returned.

A typical calling sequence for E£BORPRG would be
CONST

UTNAME C:UTFL
C 20T

3/5

LDR:L UTNAME R points at name.
N:75@/£BORPRG

JI £UNOPROC not available.

ST UTENTRY save S-~value.

JIL UTENTRY enter program.

Specialized utility programs are returned using
£PETPRG. The parameter in R should contain the S-value of
the program to be returned, exactly as it was supplied by the
corresponding £BORPRG. Hence continuing the example above,
the returning sequence would be

LDR UTENTRY
N:75@/£RETPRG

3.5 Ordering requests for extras

. Ideally a sub-system should start by borrowing
any necessary specialized utility programs. It should then
borrow its workspace. Up to this point breaks should remain -
inhibited, as they are on entry to a sub-system (see Chapter 6).
Finally, it should allow breaks, borrow its devices, and if
this succeeds, and only then, it should output its introductory
message (see Section 2.6.1). Sometimes it may not be possible
to follow this sequence, for instance it might be desired to
ask the user how much workspace he needs. However, in all cases
it should he ensurcd that, however an exit is made, exactly
those extras that have been borrowed are returned. Great care
should be taken if an exit is caused by a break.

KNL5 3/6 KOS/AAA

3.6 Running in executive mode

Therec is a facility for sub-systems to switch into executive mode
in order to do something that is impossible in slave mode. (By "executive mode
is meant the level above the usual KOS slave mode, i.e. the level at which MCP
operates; this may, in fact, itself be slave mode relative to DES-2,) This
facility is fraught with dangers and should only be used as a last resort,

When runmning in executive modc the program is untimed, unbreakable and un-
protected. Executive mode code should therefore be designed so that it does
not do any of the following things whatever errors may occur:

(a) wuse a device that does not belong to it.
(b) get into an endless loop.
(e¢) execute an error exit such as
JI £END
Executive mode is entered by the following EXEN command
N: 750/£SWEEC

This returns at the next instruction with R and M unchanged. To return to
slave mode the instruction

JIL £MTOSLAV

should be obeyed. This also returns at the next instruction with R and M
unchanged. (In actual fact MCP goes down the scheduling queue before return-
ing to the originel program. This prevents executive mode programs getting
too big a share of the available time,)

The following example shows how executive mode could be used to
punch an undecoded character on paper tape. The paper tape punch must heave
been borrowed before this code is entered,

LD CHAR
N:750/SWEXEC

LDR ;L 3

JIL £POUT

JIL £MTOSLAV

Note that when a program is in executive mode its view of the
world is completely different from in slave mode., In particular, when in
executive mode, slave fixed locations cannot be addressed directly., The
CONST area should be addressed using modified addressing relative to a
location called £MBIT21, rather than the usual £UBIT21, where £MBIT21 is a
fixed location provided by MCP. MCP provides some fixed locations for use
as temporary variables by executive mode programs., Theee are described in
Appendix C. Note, however, that their values will not remain intact between
one executive mode entry and the next. Executive mode programs should be
very wary of changing any locations other than these MCP fixed locations and
location O,

KNLL L/ KOS/AAA
Chapter L4 _ Input and output

kol . Introduction

A sub-system will, in general, be completely unaware of.
which I/O devices it is using, It will perform all iis I/0 on 2 line-
at-a-time or character-at-a~time basis using UTILIT routines,

Devices are automatically opened (e.g. supnlying of run out
at start of paper tape, form feed on printer) before they are first
used; devices are closed when L£UDREND is called.

Note that the command and message devices always exist but
the data and results devices only exist if they have been successfully
borrowed and not subsequently returned (either explicitly by £UDREND or
implicitly by, for example, a break), 4An attempt to use a non-existent
device causes an immediate logical error,

k2 Character codes

Apart from the routines for the output of messages (see
LUMSTR, ete,), all UTILIT routines work in single characters or lines
pf characters in XOS 7-bit code stored one to a word in a buffer, KOS
7=bit code is a sub-set of the standard 4100 7-bit code (i.e. internal
code with 64 added for out-shift characters). The characters omitted
from the standard code are carriage return, null and halt code.,

KOS uses the standard 4100 device routines to convert from
external representation to KOS 7-bit code, Thatever the input medium,
each line is terminated with a newline character (internal code 2) when:
the line is converted to KOS 7-bit code, Characters not in the KOS 7=bit
code are ignored on input, and are automatically supplicd on output when
the physical device warrants them, The way this is done is described
in the KOS User's Manual and in device routine specifications, Tabs
are treated just as any other character by KO3; the way they are represented
externally is determined by the device routine for the “evice that is
used,

Where not otherwise stated, the word "character" should hence-
forward be taken to mean "KOS 7-bit code character",

KNLL. L/2 KOS/AAA

L.3 Output

The sets of routines for output on the message device are exactly
similar to those used for the results device, so they are described in pairs
below,

UTILIT maintains two buffers, one of 126 characters for the current
line of results and onc of 67 characters for the current line of messages.
Characters are added to these buffers until a newline is supplied, and then the
vhole line is output., If either of the buffers is about to overflow (i.e. a
character other than a ncwline is fed to thc buffer when it is eslready full),
the newline is automatically supplied in order to output the buffer and the
next character is placed at the start of a new line,

4.3.1 UTILIT routines for cutput

The following are specifications of the output routines in UTILIT,
A. £LUMCHAR, £URCHAR

Output the character in M.
B. LUMVAL, £URVAL

Output, as a decimal number, the binary value in M., Redundant
leading zeros are suppressed and the sign is printed only if the number is
negative, No extra spaces arc supplied either at the beginning or the end
of the number,

c. £UMSTR, LURSTR

Output the packed 6-bit code string pointed at by R. (Packed
6-bit code means thc standard 4100 internal code, with characters packed four
to 2 word, The same characters are permissible as in KOS 7-bit code.) It is
imagined that the string will always be in the CCNST area so R is an absolute
pointer, However, it should not include £UBIT21 as this is automatically added
by UTILIT. . The string may include shift characters, It must end with either
a newline (in-shift 2) or an end marker; the latter is reprcsented by out-shift
octal 15, If the string ends with a newline, this is output as part of the
string, If the string ends with an end marker, the end marker is not taken as part

KNLY L/3 KOS/AAA

of the string; no newline is supplied and so subsequent characters that
are output on the same device follow on the same line, Since a newline
ends a string, it can be seen that it is only possible to output one line
at a time,

(There is a special facility which epplies if' an end marker
occurs other than at the end of a word, In this case the next pair of
octal digits is examined, Let N be the value of this octal number,
Then the previous N characters of the string preceding the end marker
are deleted, i'or example

C:ABCD
C:EXXX
0:7615838¢

means the string "ABCDE" since N has value 3, The purpose of this feature
is to avoid having to write characters as octal constants in MNN.'I, The
feature will not work properly if the characters to be deleted overflow

the buffer, In general end markers should be padded to the right with
zeroes so that the above feature is not used by mistake,)

It is not recuired that a string occupy an integral number
of words; apart from the special facility described above anything beyond
its terminating newline or end marker is ignored, It is always assumed
that a string starts in in-shift, irrespective of any preceding output,

The word string will henceforward be used to mean a string
of characters fitting the above specification,

D, £LUMCSTR, £URCSTR

Similar to £UMSTR and £URSTR except that the string is placed
at the start ol a new line, This is done by ocutputting the anpropriate
buffer if it is not initially empty; this is called clearing the buffer
(hence the 'C!'), -

E, £LUILCOM

LUILCOM is a very specizlized UTILIT routine, It prints
the message "ILLEGAL COMMAND" and returns.

F. &£UMLVAL, £URLVAL

Similar to £ZUMVAL and £URVAL except that the parameter in M
must be ih:the range 1 to 9999 and this number is output followed by =
dot and enough spaces to make five characters in all, (This is the
KO3 format for line numbers,)

KNL& L/h KDS/AAA

ho3.2_ _ _PBxemple of output instructions

CONST
LNMS C:LINE
0 :4876158¢ Spsce + epd marker,
OUTMS C: OF
C :0UTP
C.UuT" In card NEAT format.
CODE
1D:L C: X
JIL LUMCHAR
LDR:L LNMS
JIL LUMCSTR
LD:L 6
JIL - EUMVAL
LDR:L OUTMS
JIL LUMSTR

would output the messages

ae e X

*XLINE 6 OF OUTPUT

(The asterisks at the sbert of messares are automatically supplied by

UTILIT,)

Ll Input

The most important thing to remember about the input routines
is that there is a single input buffer (of 126 characters), Thus if a 1li-
ne of -data:dsread, this will overwrite any command or -answer to a questien~
and-answer that was left in the buffer, and vice versa,

The input buffer is described by the three public values
£UISIGST, LUIBFMAX and £LUIBFPT, £LUISIGST points at the first significent
character in the buffer (i,e, the the first character the sub-system should
look at - this is the character following the "&" for a command, the answer

KNI /5 KOS/LAA

to a question, the first significant column for card input, otherwise
normally the first character in the buffer), £UIBFPT points at the next
character to be scanned and SUIBFHMAX points at the newline at the end

of the buffer. These pointers are set every time a line is read, the
initial value of £UIBFPT being the same as LUISIGST, In addition, the
routines that scan the input buffer start their scanning at SUIBFPT and
update £UIBFPT to the end of their scan; routines in this category are
£LUDECODE, LUSETDEV,LUDCHAR and £UIBCHAR., A sub-system cen,if’ it wishes,
change the value of £UIBFPT but care should be taken if any of the above
routines are being used on the same buffer,

: Commands and data are automatically listed by UTILIT when
the circumstances warrant (see KOS User's lanual),

Lo4,1 TInput of commands

The routine LUCLINZ is used to input commands, It reads a
line from the command device and raturns, There is no error exit as it
always continues to recuestinput until it gets a command. The "&"
preceding the command is not taken as part of the commanc and LUIBFFT
and LUISIGST will be set to point at the character beyond it,

£LUCLINE automatically calls LUDREND to return any devices
associated with the preceding command,

Lolio2 Input of data

Data can be input using £UDCHAR or £UDLINE, Each of these
routines has two exits, the first exit being an error exit for the case
where data has been exhausted, The data terminator (full stop on a consale,
halt code on paper tape) is not taken as nart of the data and directly it is
encountered the error exit is taken. (However, the device is not automati-
cally returned when the terminator is found; it is only returned when LUDREND
is called, This is because returning a device often produces a message and
it might upset the output format to output this message at the wrong time,
Both LUDLINE and £LUDCHAR "stick"at the data terminator and will continue
to give the error exit on all calls until the data is replenished by £USETDEV.)
If & command is encountered when an attempt is made to input data, the error
exit is taken but input is "backspaced" so that the next LUCTIN. reads the
same command,

If a pseudo-command is input from the -data device, UTILIT
automatically precesses it and inputs the next line, Thus sub-systems
do not need to worry about them,

Four public values can be used to control the readingz of data.
They are initialised by LUSETDEV, but may subsequently be changed by sub-
systems, The variables are as follows: '

KNLL, L/6 KOS/AAA

Neme Initial value Heaning
LUDLINO 0 Line number of input data,
updated each time a linc is
read - useful for error messages.

£LUDCDST 1 Starting column if data is from
cards,

£UDCDEND 72 Last columnn if datais from cards,

£LUDLIST 0] (2 means 1ist with line numbers.

(1 means list,
(0 weans don't list.

(The value of £UDLIST is controlled dynamically by the DLIST and DUNLIST
comnands and the LIST and UNLIST pseudo—commands.g

The exact specification of the two data input routines is
as follows,

LUDLINE tries to input a line of data, I3t succeeds it uses
the second exit; if it fails it uses the first,

LUDCHAR tries to input a single character of data. If it
succeeds it places the character in M and uses the second exit; if it fails
it uses the first, (Except when it needs to input a new line, LUDCHAR
simply performs the action:

LD:I LUIBFPT

COMP:L 2 NEWLINE

J7Z 2 NEVIR ADVAIICT LUIBLPL BLYOND
INCS LUIBFPT TERMINATING NEVLINE

Although LUIBFPT is not updated when a newline is encountered, a special
marker is set so that on the next call to £UDCHAR a new line is input,)

Lohe3 Questions-and-answers

LUCCLINE is the UTILIT routine for command cucstions-and~-answers
and LUDCLINE is the corresponding routine for data question~and-answers,
The former has a parameter in R and the latter has paraneters in both
R and M, Both routines have two exits, LUCCLINE sets un the cuestion
in the message buffer and LUDQLINE sets up the cuestion in the results buffer.

KNLL L/7 KOS/AAA

In both cases the question must it into the buffer. In most uses of
LUCOLINE and £UDNLING the question is a predefined string, In this case
the parameter in R points at the string, in a similar vay to the parameter
to £0MSTR, The appropriate buffer is then cleared and the string is

then copied into the buffer and taken as the question, The string must

be terminated with an end marker (and therefore it cannot contain a newline).
An alternative way of using £UCQLINE and £UDNLINE is to place the question
in the apnropriate buffer in advance and then to call the routine with R
zero, This is useful if the question contains some variable clement,

To avoid confusing the user, cuestions should ncver begin with
an ampersand or colon, They should normally end ..ith %n ecuals sign.
(There is no question mark character on a 4130 console,)

The parameter in M to £UD.LINE determines whether the question
is to be compulsory. Zero means compulsory and one means optional.

In all cases exit 1 is used if the ouestion is unmetched.
(This can only occur in the non-conversational cosy.) If the question is
optional the input medium is "backspaced" so that the same line is read
again on the next request for a line from the device (in fact it is even
possible to try to match the line with a different question); ir the
compulsory case an error message is produced and no backspacing teles place.

Exit 2 is used in all other cases, The answer is nlaced in
the input buffer, in the same way as for LUCLIYE, The routine LUDECODE
(qev.) is very useful for decoding the answer, The action of a sub-system
on getting an unsatisfactory answer should normally be to repeat the question,

Unlike LUCLINE, LUCQLINE does not release the data device.
However it must not be called when the data device is in a "backspaced"
state as described above since this would corrupt the buller. (Hence
KOS forces a logical error if this happens,) Therefore SUCQLINT must
not be called immediately after a call of £UDJLINT with an optional cuestion.

One last point, If LUDCHAR is used to scan ordincry data
immediately after LUDCLINE, it is necessary to perform an initial call
of £UDLINE. This clears out any data left in the buffer after LUDQLINE,

L.b4.h Example of use of LUCOLINE

PR NP

Here the question is "CONTINUATION=" and +he answer must be
"Y’ES" or |INO" R

KNLL 4/8 KOS /AAA

CONBT
CNTRS C :CONT
C:INUL
C:TION
0:3576158¢ Equals plus end marker.
NOTE DECODE TABLE -SEE CHAPTOR 5
YNTAB 3
C: ¥ If YES,
C: B
C: S
2 esoluse exit 2,
2
C: N If NO,
C: 0
L ceouse exit 3
=L, If anything else,
Z ...use exit 1,
CODE
ASK LDR:L CNTMS
JIL LUCLLINE
JF ERROR Error exit.
LDR:L YNTAB
JIL LUDECODH
JB | ASK Unmatched answer,
JB CONT Ansver YBES,
e enone fnswer NO,

As g second example, if the line labelled .5Ii and the line that
follows it were replaced by the lines

WSK LD CHAR
JIL LURCHAR
ID:L C: =
JIL LURCHAR
LD:L 0 Compulsory cuvestion,
LDR:L 0 Use buffer as cucstion,
JIL LUDNLINE

where the variable CHAR contained the letter "C", then the effcct would
be identical to the above except that the gucstion would be "C=" and it
would be a data question-~and-answer rather than a commend one.

KLY 4/9 KOS/AAA

L.bh.5 Input of characters from the buffer

The routine LUIBCHAR can be used to get the next character
from the input buffer, irrespective of the nature of the line in the
buffer. LUIBCHAR has 3 exits, depending on the nature of the character
found,

Exit 1 is used if the character is a terminator (newline or
semicolon).

Exit 2 is used if the character is a separator (tab, space
or comma).

Exit 3 is used otherwise,

The character is returned in M and LUIBFPT is increased by
one, except when the first exit is used, It can be seen, therefore,
that LUIBCHAR never reads beyond the terminator of the current line,

ko5 Tdentity of 1/0 devices

It is possible for a sub-system to find out what physical
devices are in use by examining the four public values : £LUCIVB, LUDDVB,
£UMDVB, £URDVB, These contain the KOS device number (see "How to run
KOS") of the command, data, message and results devices. The wvalue
500 currently means that the device does not exist , a value exceeding
600 means that the device is a job file, and 2 negative value means a
DC,

It is sometimes useful to examine if certain devices are
the same. ~ For example if £UCDVB ecusls £UMDVB, KOS is in conversational
mode, and if LUDDVB equals £LUHMDVB there is no point in givinz & line number

in an error message (similarly if LURDVB equals £UMDVB and SUJLIST exceeds
zero - if the reader ccn work that one out).

It is very bad practice to test the individual values of
the various device numbers since one of the central nrincionles of KOS
is that it be device-independent, Moreover, the device numbering system
is likely to change when KOS is extended.,

5/1

Chapter 5 Decoding of Input

UTILIT contains a very important routine, called
fUDECODE, which is useful for implementing supplementgry
commands, dealing with arguments to commands, processing .
answers to questions-and-answers and, in some cases, processing

data.

fUDECODE works on the set of characters in the input
buffer, beginning with the character pointed at by EUIBFPT. It
first advances £UIBFPT if necessary to scan over separators
(commas, spaces or tabs) until EUIBFPT points at a non-separator.
It then scans for the next sevarator or terminator (semi-colon
or newline). The set of characters in bhetween is called the
decodee; note that if the first character scanned is a
terminator, the decodeewill be null. Except where otherwise
stated, on return from L£UDECODE, EUIBFPT is further advanced
(if necessary) to point at the first non-separator beyond
the end of the decodee. This facilitates the use of EUDECODE
to process several successive decodees on a line.

Example

26, 35
f
EUIBFPT

If EUDECODE were called with EUIBFPT pointing as indicated
above, the characters "26" would be the decodee and on return
EUIBFPT would point at the character "3%,

The action to be performed by EUDECODE is controlled
by the decode table. The parameter of EUDECODE, which is in R,
is an absolute pointer (but with bit 21 omitted, since this is
added automatically) to the decode table.

The decode table consists of a set of contiguous
table entries. The first word of each table entry identifies
the type of entry. The various types of entry have different
lengths. In most cases the last word of an entry is a return
offset. This means that if E£UDECCDE matches the table entry
(see later) it is to add the return offset to the link before
returning to the calling program. Thus if the return offset
is 2, EUDECODE will skip one instruction on its return to the
calling program. A return offset of minus one is interpreted
as "go bhack to start of decode table."

5/2

‘One class of table entry will match the decodee
only if the decodee is of a certain form, a sccond class will
always match, and a third will never match. IYembers of this
third class have no return offsets; they are effectively
unconditional commands to £UDECODE.

£UDECODE scans the table entries one by one,
performing the action of each, until a match is found that
causes it to return to the calling program. The table must
end with an entrv that will match any decodee (i.e. one of the
entries listed in Section 5.1.2 below).

5.1 Types of table entry

The types of table entry are listed below; their
names have no significance except for description and
documentation. = Section 4.4.4 contains an example of E£UDECODE
and there are other examples at the end of this Chapter.
Appendix D contains a summary of the types of table entry.

5.1.1 Conditional matches

The following types of table entry match the decodee
only if it is of a certain form.

A. FIND table entrv

i
Format N N characters { return offset

i

NZo0

The N characters are in KOS 7-bit code and are stored
one to a word. FIND matches the decodee only if it corresponds
exactly to the given N characters.

B. GETNUM table entry

Format

and not greater than binary integer 2.

=1

binarv integer 1

binary integer 2

return offset

GETNUM matches the decodee only if it is, in character
form, a (possibly signed) integer not less than binary integer 1

value of the decodee is returned in M.

When a match is made the

5/3

5.1.2 Unconditional matches

The following types of table entry will match any
decodee.

A. SYSDO table entry

Format -2 % return offset |

: Treat the decodee as a global KOS command. If
it contains no errors it is executed; in this case SYSDO
will return to the calling nrogram at the get-off entry
point if the KOS command is one that causes an exit from the
current sub--system (e.g. entry commands, JOB, EXIT), and
at the return offset from the point of call otherwise. If
the decodee is not a correct global KOS command the appropriate
error message is output and a return is made at the return
offset from the point of call.

SYSDO automaticallv performs the action of EUDREND.
The settinag of EUIBFPT after a SYSDO is indeterminate.

B. FERROR table entry

Format i -3 | return offset

The message "ILLEGAL COMMAND" is output and a return
is made to the calling program at the given return offset..

C. ALL table entry

{
Format -4 | return offset
|

A return is made at the given return offset.

D. RESET table entry

Format -9 return offset

RESET is the same as ALL except that, on return,
EUIBFPT is left to point to the first character of the decodee, so
that it can be re-scanned if necessarv.

5/4

5.1.3 NMon-matches

The following tvpes of table entry never result in
a match; they therefore contain no return offset.

A. GETCOM table entry

Format -5

fUCLINE is called. (Two features of E£UCLINE should
be noted in this context because of the side effects that they
may have: firstly that it calls £UDREND; secondly that it
resets EUIBFPT.) . GETCOM can only occur as the first entry in
the table; when it does, the decodee is taken from the start of
the new line input by E£UCLINE, not from the line that was in
the buffer when EUDECODE was called.

B. ISLAST, NOTLAST, CANLAST table entries

Formats ISLAST -8
NOTLAST =7
CANLAST -6

(1) ISLAST means that subsequent conditional matches are only
to succeed if the first non-separator beyond the end of the
decodee is‘a terminator (i.e. in the case of a command line,
if the decodee is the last argument or a command with no
arguments) .

(2) NOTLAST means that subsequent conditional matches are only
to succeed if the first nen-separator beyond the end of the
decodee is not a terminator.

(3) CANLAST means that subsecuent conditional matches are
to be independent of what follows the decodee.

Any occurrence of one of these three table entries
overrides any previous one. Initially CANLAST is always
assumed.

5/5

5.2 Examples of decode tables

Example 1
Neat address
field Comment
-5 GETCOM < 1lst Table Entry
4 FIND 5
C: C
Cis) 2ncé Tabhle Entry
C: N
C: T
7] Return offset _
-8 ISLAST J 3rd Table Entry
2 FIND <
gf 'g 4th Table Entry
2 Return offset =
-2 SYSDO 7 stn .
- Go back to start of table J 5th Table Entry

This decode table recognises two commancis:
CONT and GO. The former may have arguments, the latter
cannot. Any clobal KOS commands are executed without returning
to the calling program. 2 call of ZUDECODE using this table
would have two exits, the first for CONT and the second for GO.

Example 2

-1 GETNUM -
~-32768 Lower bound
-1 Upper bound 1st Table Entry
o) Return offset .
=1 GETNUM -
8 ggzii ggﬁﬁg 2nd Table Entry
2 Return offset _
-1 GETNUM -
1 Lower bound .
32767 Upper bound 3rd Tablec Entry
4 Return offset B

FIN) scodee .
g RetgégaSEQEthull decodes) | 4th Table Entry
-4 ALL Z
8 Return offset | 5th Table Entry

(continued overleaf)

5/6

This decode table tests if the decodee is a negative,
zero or positive intecger or if it is null. A call of £UDECODE
with this table would have five exits as follows:

l1st exit : negative numbexr (in M).

2nd exit : zero number (in M),

3rd exit : positive number (in M).

4th exit : null decocdee.

5th exit

o8

anvthing else.

6/1

Chapter 6 Breaks

6.1 Routines for breaks

UTILIT contains two routines for controlling the
break status, viz:

£UALBRK Allow breaks.
£UINBRK Inhibit breaks.

Neither routine has any parameters nor any results. If the
console user tries to break while breaks are inhibited the
break is "remembered" and comes into effect immediately breaks
are allowed again. When a sub-system is entered (by any of
the three entry points) breaks are inhibited by COMMAN.

The action of UTILIT on a break is to inhibit breaks,
call EUDREND, output the message *BREAK" and enter the sub-system
at its break entry point.

A sub-system can cause a forced break when some
unrecoverable condition has occurred. This is done by calling
the routine E£UBREAK with R pointing at a string as for E£UMSTR,
UTILIT performs the same action as for a user cenerated break
except that it prefixes the message "BRERK" with the string
pointed at by R. This string should, therefore, be terminated
by an end marker (rather than a newline) so "BREAK" (which
is preceded automatically by a space) can follow on the same
line. E£UBREAK is used by £UNOROOM, the messaage being
"NOT ENOUGHE WORKSPACE -~ BREAK"., “Forced breaks occur even
if breaks are inhibited.

6.2 What to do at a brcak

The ecasiest thing to do on a break is simply to
exit. This is, however, only really acceptable to the user in
the case of a simple sub-system. In more elaborate sub-systems,
which may perform several different actions in a seguence, the
user would be very annoyed if a break in onestep invalidated
all his previous work. For example he might have compiled a
program and be in the process of testing it against several
sets of data when oneset caused the program to go into an
_endless loop. What he would like to do is break the run
without losing his compiled program. Moreover he would like
to be able to examine the values of variables to try to find

6/2

out what went wrong. In other words he wants his compiled
program, his dictionary and the values of his variables to
survive breaks.

If a sub-~system is to provide facilities such as
this it must be very careful when it allows breaks. For
example if a linked list is to survive breaks, breaks must
be inhibited whenever it is in an unstable state, for example
when the chain is momentarily broken to add or delete an item.
In general, when a number of related variables describe an
entity, if that entity is changed breaks must be inhibited
until all the variables have been updated to describe the new
state of the entity. Examples arc: a string described by a
length field followed by some characters, an array described
by a dope vector, a stack describing the state of a program.

Hence a sub-system needs to satisfy two conflicting
aims:

(a) Breaks must never be inhibited for longer than,
say, a tenth of a second of computing time.

(b) If reasonable recovery facilities are to be
offered, great care must be taken to inhibit breaks whenever
the sub-system can be in an unstable state.

A sub-system offcring recovery facilities must return

to command status after a break to let the user say what to do
next and in particular to exit from the sub-system if that is
what he wants.

It is sometimes desirable to have. different "levels®
of breaks, for example

(1) a break during initialization causes an exit.

(2) a break during compiling destroys everything
and returns to command status.

(3) a break during running aborts the run but some
diagnostic information is output and the user
can examine the values of scalar variables.

6/3

Breaks are automatically inhibited by the KOS system:
after a logical error or after a job stream has been killed.
The sub-system should make sure breaks are inhibited:

between being entered at the get-off entry and jumping

when anything that is to survive the break is in an unstable

6.3 When brecaks must be inhibitecd
(a) on any entry to a sub-system,
(b) on return from EXEN £BORPRG,
(c)
(a) on a call of EUBSPACE or EURSPACE.
(b)
to EUEXIT.
(c)
state.
6.4 When breaks must be allowed

A sub-system should allow breaks whenever possible,

in particular:

(a)
(b)

(c)

6.5

whenever any input is requested.
whenever EUSETDEV is called.

at least once every tenth of a second of computing time.

Changing break status

Apart from the UTILIT routines that explicitly deal

with breaks (i.e. £UALBRK, E£UINBRK, E£UNOROOM and £UBREZAK), no
UTILIT routines change the break status provided that none of
the rules given in the two previous Sections is broken.

7/1

Chapter 7 Documentation

All sub-systems must have manuals written for them.
There are certain conventions that must be observed in KOS
documentation;: these arc listed elscwhere.

In the description of a sub-system, the following
information must be given about its interface with KOS;

(a) The form of its entry command.
(b) A list of its supplementary commands.

(c) Its treatment of breaks; when they are allowed,
what they do.

(@) Its usage of user's workspace (state if none).

The writer of a manual should, whenever applicable,
use terms from the KOS User's Glossary (see Appendix to KOS
User's Manual). Synonyms for these terms must not be used.
Documentation for sub-system writers (e.c. specifications of
specialized utility programs) can and should make use of
terms in the KOS Sub-system Writer's Glossary (see Appcendix F).
Writers of manuals for users must not, however, make use of
these terms without explaining them,

The program representing the sub-system itself must
be properly commented and documented. This is vitally important.

KNLL 8/1 KOS/AAA

Chapter 8 _Debugging

Debugging common programs is relatively easy because they
tend to stop on an addressing fault when anything goes wrong; moreover,
all variables are LOCATEd and thus easy to find, The program PM (see
"How to run KOS") is invaluable for diagnosing faults. Debugging runs
are normally best done in the batch with card input and printer output.
The UTILIT public values are often useful in interpreting dumps (e.g.
buffer pointers, etc., see Appendix A),

Before its dumps, PM produces some other diagnostic information.
Typically it may look like this,

1. LOGICAL TRRON IN COILION iIODE PROGRAL BASIC
2 (MONITORZD AT LOCATION 22571

3 THIS IS 53 R.LATIVE TO START OF LICP)

L, BASE = 30720

5o PATLED AT LOCATION 19573

6. THIS IS 249 RELATIVE TO HAIN FIRY POINT

The information in lines 1 and 5 is derived by subtracting
two from the s-value at the point of failure; occasionally this will give
unusual results, If s does not contain bit 17, line 1 reads

LOGICAL IRROR IN SLAVE MODE PROGRAM
and line 6 is omitted.

When PM is dumping it prints several values to a line, It
all the numbers on a line are zero, it omits the line, " ‘hen one or more
lines are omitted in this way, P! prints an asterisk, The storage area
for each KO3 job stream is zeroized when the job streaum is created (on
a set-up er reset entry to KOSEX - see "How to Run KOS"), This is done
to reduce the size of post-mortem dumps.

If a logical error occurs during a KOS5 console session, a

post-mortem should, if possible, be taken before KOS5 is set going again; if not,
most of the information about the logical error will be lost.

KNLL, 8/2 KOS/AAA

Somstimes a logical error will occur in UTILIT or o specialized
utility progrom, This is caused by the sub-system cclling o routine with
illegal parameters or under illegal circumstonces (e.g. on attompt to use
a device without borrowing it). UTILIT will often force & logical error
using EXEN £LOGERR in such circumstances,

It is planned to 2dd on~-line debugging aids to KOS in the future,

A special KOS command is available for testing new versions
of KOS programs at disc installations, This is the TRY command, TRY
is identical to the INTIR command except that if the progrom for the sub-
system to be entered is not =lready loaded it is loaded from the PAD on
the KOS default disc rathcr than from the system, Hence if a new version
of a sub-system called DOALL was on the PAD it could be entered by

TRY DOALL

(An alternative method would be to load DOALL staticolly from the PAD (see
"How to run KOS") and then to use LINTER.)

Hence a good woy to test a2 new sub-system is to vrite its
program to the PAD using NEATERD and then to check it out using TRY before
adding it to the system, Ordinary users should not be informecd of the
existence of the TRY command,

KNL5

A

Ippendix A List of public values

The following is a list of the public values.,

KOS/AAA

Sub~system

yriters can make usc of these values but must be very wary of changing
them, especially those not explicitly mentioned in the documentation.
The locations in which the values are stored are liable to change.

base, i.e. absolute
address of storage area

used to address CONST area
used to address MCP area

status of data listing

data line number
results line number
first card column
last card column

points at next input
points at start of results

points at physical end of
results buffer
points at start of message
points at physical end of
message buffer

data device number

Location Identifier Meaning
3 £LUBLSE*
L £UBIT21%
5 £LUKBIT21*
128 LUDLIST
option
129 £LUDLINO
130 LURLINO
131 £UDCDST
132 £LUDCDEND
133 £LUIBFPT
) character
134 £LURBFST
buffer
135 LURBFMAX
136 LUMEBFST
buffer
137 £UMBFMAX
138 £UDDVD
14, £LUIBFMAX

points at last character
in input buffer

See Section

2.4
1a2

2.8

L.h.2
bol,2

L.h.2
bolo2

L.k

bo5

bk

KNL5 Af2 KOS/ALA

146 £LUCDVE. command device number L.5
15 £URDVB results device number L5
156 £URBFPT points beyond last character

in results buffer -
162 £UMDVB message device number 4.5
164 £LUMBFPT points beyond last character

in message buffer -
170; £LUTEMP1 - temporaries for UTILIT, Can be -
174 LUTEMP5 used by sub-systems between -

(calls of UTILIT

185 £UISIGST points at first signifioént L4
character in input buffer

* LUBIT21, £UKBIT21 and £UBASE contain specially adjusted values when KOS

runs under DES-2, Sub-system writers need not, however, be concerned with
this,

KNLL B/

Apperdix B List of UTILIT Xoutines

KOS/AAA

Loc~- . Param- Res=~ . \ . See
ation HienE s 1oz eters ults S Megnln% Section
50" £LUALBRK - - 1 z1low breaks 6.1
5% LUINBRK - - 1 ‘inhibit breaks 6,1
532 £LUSETDEV M - 2 borrow D/R

devices 3.2
53 £LUDREND - - 1 return D/R

devices 5e2
5k £LUDECODE R (M) many decode 5
b5 LUNSTR R - 1 output string

to messages Lo 3,1
56 reserved
57 LUMVAL M - 1 output number

to messages Lo3.1
58 £LUMCHAR M - 1 output character

to messages L,3.1
59 LURCHAR M - 1 output character

to results 4.3,1
60 £UDLINE - = B get a line of

. data L.4.2

61 £LUCLINE - - 1 get a line of

command L.L,1
62 reserved
63 LURLVAL M - 1 output line number

to results 4, 3.1
64 £UMLVAL .. M - 1 output line number

to messages 4e3,1
65 reserved
66 £URVAL M - 1 output number

to results

431

KNLY B/2 KOS/AAA

Loc= ‘s Param=- Res- . _. 20 . g
ation IEEBMISE opops grpe [HMSS Teening Section
67 reserved
68 LUILCOM o - "TLLEGAL COLE: IND"
message L.3.1
69 reserved
70 LURSTR R - output string to
results by 3.1
71 reserved
72 £LUBSPACE R R borrow workspace 3.3
73 £URSPACE R - return workspace 345
Th reserved
75 reserved
76 reserved
77 LUIBCHAR - M get input char-
acter from buffer L.,L.5
78 LUNOROOM - - no workspace -
forced break - P
79 LUMCSTR R - clear, then
£LUMSTR b.3.1
80 £LURCSTR R - clear, then £URSTR L. 3.1
81 £UEXIT - - exit from
: sub-system 2,6
82 reserved
83 £UDCHAR - M get input
character Lobo2
8l £UNOPRG - - no program exit 3ol
85 £UCQLINE R - command question~ L.4.3
and-answer
86 LUBREAK R - force break 6,1
87 reserved
88 £LUDQLINE R,M - data question- Lob,3

and answer

KNL5 ¢/ KOS/AAA

Appendix C List of EXENs and MCP fixed locations

The following table lists the EXENs that sub-systems may use,
and indicates where they should be LOCATEd.

Looation Mnemonic Meaning See Secticn
12736 £LOGERR force logical error 2.5
12800 £BORPRG borrow program 3ol
12864 £RETPRG return program Bk,
13184 L£SWELXEC switch to executive mode 3.6

Note that if the above LOC.TEs are uscd EXENs should be written using the
"N:" feature of NEAT, e.g ’

N:750/£RETPRG

The following are fixed locations in MCP that are of use if the
executive mode facility described in Section 3,6 is used,

Location Mnemonic Meaning
313 LMTOSLAV subroutine to rcturn to slave mode
L80 £MBIT21 analogous to £LUBIT21

481-485 - temporary variables for executive mode programs

D/1

Pppendix D List of decode table entries

Try to match next N characters. 5
Try to match number in given range.
Treat deccdeec as global KOS command.
Treat decodee as an error.

Treat decodee as matched.

Somethina may follow decodee.
Something must follow decodee.
Nothina can follow decodee.

lst word Mnemonic Description
N > O FIND

-1 GETNUM

-2 SYSDO

-3 ERROR

-4 ALL

-5 GETCOM Call EUCLINE.
-6 CANLAST

-7 NOTLAST

-8 ISLAST

-9 RESET

As ALL but reset E£UIBFPT.

E/O

‘Appendix E A sample sub-system

This Appendix illustrates a complete, albeit rather
trivial, KOS sub-system. Firstly a listing of the program,
in NEAT, is given and secondly a sample of its actual use at
a console is shown.

~

.
»

(NF™MOD

$/ROCA/TEST

%]

..
» T

84018

e

pri2iTeS

e

Q.\x
T
FQ

«

B}

0
Lis
T
<
[¥V]

65

€5

1971

e
()
oy
w o i o
C S «<
b 4 tu Q.
e .

<t O

th
HaR A
AY

1
e T L 3
1) Moy
o L, =
[o e, < O
% ta:"Ji
i -
T el
< W UL
- a O &
& JE
2 T3l &
<1 s e LEE A0
o e wa
e fai b= 77
(o] I 2D
&3 F-ow P
Q x
1= = (o)
i 2 o P
=Ntk 23 =
[ON o &
b3 t.
e g
o
.z
>
L w

Ly

>
«f it
[»-
v N i Ny
— fo N3 W O
‘y = LY oaay
- > > (V0 | LA
19 o R (S | a2 L oy &
A I - = &l T B
— O A L PO E U]
Foy
«f i1,
3 ol T
G0t [
3 o« Lol o
- r. Lo
i €D v 2

-

o

.
ol ~d
X Rl
< &

L

(P8

Y

ViE

St b

‘e

(84

.

&y b

-

< (2

=
r

(ST vt

Iy

— U

NN

(e

-

JONE 83

&3 b

P LD

[¥e

r

ves)

SU |

<

m

£USTTNV

A

/A .“‘J‘.

[
2

KQE

-

t3 T
oAl med oA

g e s T

—

™

>
T

Cy -~

>

-t

E/2
=)

r

(@]

[92]

LS

I.c. CEACH SLAVE HAS [TS OWN CGCPY

DATA PART 1: ENTRY POINTS TO UTILIT

2 50 ALLOW RRFAKS
3 . 52 SET 10 DFVICES
11 55 QUTPUT A MESSAGE STRING
4 66 QUTPUT A NUMBER TO RESULTS
13 70 QUTPUT A STRING TO RESULTS
2 81 EXIT BACK TU «O0S

83 GET A CHAR Uf DATA

DATA PART 20 VARTEZLES USFD RY SUR-SYSTEW
LOCATIONS 360 70 499 ARFE AVAILABLE FOR TRESE

cl§ 1]
Q) Iy
COUNT OF INPUT CHARACTERS
SRATA PART 30 FURBLIC VaALU'E CONTAINING PIT 21
eee OROITS FEQUIVALENT IM THE DES-2 KOS ..

MV IRONMENT

S

CONSTANT AREA

THERE IS ONLY ONE COPY OF THIS

CONSTANTS HAVE 28SGLUTE ADDRESSES AND MUST oE
ABDRESSFD USING LUSIT21

UPAPROW
NCTE

INTTHMS

e
(:_"
GFATHS
E W I i ‘-“ Q
o ‘
NOTE
gODE
RNOTE
NCTF
NOTE
A NOTE
L PN TE
pd v

J¥
J¥

124 CODE FOR
MESSARES'
C:COUN

tTING

: R0

s OO0 nN

-
o« oa
- R

{
(¢

oA
DirsS oS
C:0 v 4
e 3
Cer
reNd
~ =
4 LFE
{ 'Q'J‘\T
- T Ko™
L NG

cnpn FaART 1t INTTIaALI

IMITIALISATION FOLLOW

MEARLY ALL CUR=SYSTEMS
7

THRFE THSTR
ENTRY POINTS FR0¥ KOS

EMTRY 18
ENTRY 2:¢

UPARRON

SATION
¢ A SIMILAR PATTRRN FOR

GCTIONS ARE ALWAYS

MAIN ENTRY
FRE-AK ENTRY

CS/ALA

g
14N

%/4

MNLS

D s o mmah

LR R

WARNTING 1/%

NOT

NEWE DA

JF

JIL
Lisi
JIL
NOTE
JF
LOR:L
JIL
NOTF

JIL
LDR:L
JIL

GETOFF

fUALBRK
2
LUSETREV
GETOFF

INTTMS
fUMSTR

COLE PART 2:

CnynT
LHDOHAR

ACTTION AT

D1eTHIT A
counT

LURVAL
SEARMS
LURSTR

oG

EMTRY 3¢ GET-0FF ENTRY

ALLOW BREAKS
SET UP 10 DFVICES (PARAMETER ...
ees OF 2 MEANS ROTH DATA AND ...

.. RESULTS DEVICES NEEDEL)

INVALID EXIT

OUTPUT INTRODUCTORY MESSAGE
(UMSTR AUTOMATICALLY ADDS BIT 21
eee TO ITS FARAMETER)

MAIN SECTION OF CUDE

GET A% INPUT CHARACTER
ItyAaLID ex1T, INPUT EXHAUSTED

TEST IF NowWt IN=

TEST 1P URPARWOwW

(THIS SHOWS USE COF RIT 21 TC
cee REFERENCE THE CONST ARER)
(SIMILARLY HSE RIT 21 FOR ...

o o 9

e e o V-LITER:LS)

D OF LINE

LINF DF FORM: (.. LINES S2 FAR

QUTPUT COUNT

CUTPUT REST OF MESSAGE

1.0

e w

25

NOTE
GETHF ¥
RREAK LOR S

END
RELATIVE YRESTES GF STACKS
I 2
G 11
) 34
PROG<AM LFNETH
G 7 &
v 0
NO eRRPMRS

EHOG iy PRON
KIOSEY
coMMan
cOoMMAN
UtTIelr
MCP
SR Y

“///

MODE NQT 8EDR

KLLHF 1

MCP KMLEM

3 STREAMS

TN CONTROL

L:

SeT

up

i
CALE

PART

3: FINALISATICN

CLOSING MESSAGE

EXIT BACK 77 KIS

Ny

et
Aol

saa KNS READY - yESI10R KL

A RAND TEST RUN [THE ATC

seail 'y TEST

araCOUNTING PROCEA (VEKS
IL1ST,L

12345
THANS SO AR

7839
TH4a3% S0 FAX

1
CHaRS SO FAR

L
KKK

Vo
Y

(@]

o b e

FN S I L i
.
(=]
T
EA
W
“
~.)

N W
.
(P
% 5
p=3
e Jd L
i ¢
€=
N
D re

1091 £N3 JnRr STVRPS Ext
ZLETE
SER NOT DPELETED

SEND
iME = Anng
G

~J
N
o

4

.‘/6

i
waf

== K N
D

STaRTH

w08 'l/A AA

KiL5S E/7 ¥0S/AAA

Usare at a console

g gHIs Is A HUN IR LS N A CONGILE
N5 eee AFIER TL HAL HEIN UPDALKD TP IHE SYSIEM

LEAIER OTELT

*EHCOHUNTING PROVIRAY (UFEKST IV ¥NLS5AY S1AlTES

2123456178 L
9 CHARS 51 FAH
$

17 CHAKSG S) AN
SARGHFE HT J¥T, VN
2h CHARS 5) FAR
R

0 CHARS S) FAR
HEC RS

6 CHARS 5) FAn
11273313 | 23

3 CHARS 5) FAHR s
gl ‘ '

5 CHAKRS 5) FAR

-)

*ExEFND) COHUNITNS

%

F/1

Apnendix F Sub-system writer's glossary

The glossary given below, which is supplementary to
that in the KOS User's Manual, has, like the latter, a dual
purpose.

Firstly it can be used as a dictionary. The reference
against each term indicates the Section in which it is first
defined or used.

Secondly it should be used by persons givinag lectures,
writing manuals or even talking about KOS. Here it should be
used, together with the User's Manual glossary, to define a
standard terminologv which must be adhered to whenever the context
is appropriate. Synonyms should not be used.

Terminology

MCP (master control program)
Slave, slave mode

common program

Base, range)

Slave fixed locations

Sub~-system fixed locations
Relative pointer, relative address
Absolute pointer, absolute address
Logical error

COMMAN

UTILIT, UTILIT routines
Specialized utility prooarams
Public values

Parameters) re UTILIT routines

Results) and EXENs
Exits)

Return)

EXEN

Initial entry
Break entry
Get~-off entry

Extras
Borrowing and returning extras

KOS 7-bit code
Newline (character)
Character

Packed 6-bit code
End marker

String

Clearing a buffer
KOS device number

Decodee
Decode table
Return offset

Match (of decodee with decode table entry)

Allow breaks
Inhibit breaks

F/2

Definition in Section

bt et et o et et e
L] L] . ° L] . 1] [] L]
DBWNHKFH UNNN N

NN
e o o e e o o o

NN
L]
AU

ww
L] []
-

00 I I D D O D
L] 9 o L]
L] o L]
[Py

Uwwwwhh

oot

(o) We)]
* .
-

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56

