
r

KENT ON-LINE SYSTEM

Document: KOS/Afili/2

Sub-apIem writer's manual

F.J. Brown
University of Kent at Canterbury
December 1970

"", 	 -

KNL5
	

0/1
	

KOS/AAA

TABLE OF CONTENTS
Introduction

Chapter 1 	Hardware considerations

1.1 	Basic features
1.2 	Use of storage by KOS
1.3 	Notes on addressing
1.4 	How to write a common program - a summary
1.5 	Logical errors 	•

alpr 2 Interface with KOS

	

2.1 	COMMAN and UTILIT

	

2.2 	Specialized utility programs

	

2.3 	Interface with UTILIT

	

2.4 	Using UTILIT routines

	

2.5 	Communicating with MCP

	

2.6 	Entering and exiting from a sub-system
2.6.1 	Messages on entry and exit

	

2.7 	Naming sub-systems

	

2.8 	Looking at MCP fixed locations

Chajj Use of extras

	

3.1 	Extras

	

3.2 	Data and results devices

	

3.3 	User's workspace
3.3.1 	Borrowing user's workspace
3.3.2 Returning user's workspace

	

3.4 	Speodalized utility programs

	

3.5 	Ordering requests for extras

	

3.6 	Punni. ng in executive mode

Chapter 4 jnnut and output

	

4.1 	Introduction

	

4.2 	Character codes

	

4.3 	Output
4.3.1 	UTILIT routines for output
4,3.2 Example of output instructions

	

4.4 	Input
4.4.1 	Input of commands
4.4.2 Input of data
4.4.3 Questions-and-answers
4.4.4 Example of use of UCQLIFE
4.4.5 Input of characters from the buffer

	

4.5 	Identity of i/o devices

KNL5 	 0/2 	 KOS/AAA

2h2RIPr 5 DecoaiTa of in,put

5.1 	Types of table entry
5.1.1 	Conditional matches
5.1.2 Unconditional matches
5.1.3 Non—matches

5.2 	Examples of decode tables

Chu.er 6 Breaks

6.1 	Routines for breaks
6.2 	What to do at a break
6.3 	When breaks must be inhibited
6.4 	When breaks must be allowed
6.5 	Changing break status

Chu:.ter 7 Documentation -.1.=.1119111161. 	 ,

Chutey 8 DebugginL

Apss_pdix A List of _public' values
OMMS.1•=rai”Calc-..--

.11Epanj.ix B List of UTILIT routines

Appp_pdix C List of EXENs and MCP fixed locations
-vases 	seaccasar 	'Er+. va_aarar-r-s. -ca •TY-al -A.

Appendix D List of decode table entries

ALEP.E.tlx E

A s amaes_u_b_747,3r_p-c4r2

E.1 	The program in NEAT
E.2 	Usage at a console

Appendix F Sub—system writer's glossary

0/3

Introduction

One of the principal aims of KOS is that it should
be open-ended, i.e., it should be as easy as possible for
users to add their own sub-systems. This manual is for users
who wish to do this. Obviously, before attempting to write
a sub-system, the user must be familiar with using KOS, with
its terminology and with the general principles that govern
its operation. It is also necessary to know NEAT.

KNL4
	

KOS/AAA

21?pter 1 	Hardware considerations

Basic features

KOS consists of a master control_prociram (MCP) which controls
a number of slaves, one slave for each KO 3 job stream. 	Slave programs
run under a special hardware mode called slave mode. This is similar to
the normal mode of working (executive mode) except that addressing is
performed differently and there is protection against slaves interfering
with one another. The hardware is described in full detail in Volume 1,
Part 3, Section 3 of the 4100 Manual, but the user need not concern himself
with all the details of this, since some of it is concerned with the
scheduling aspects which are performed by MCP.

The hardware contains a very useful facility, called the common
psismam feature, which allows a single slave program to be shared by any
number of slaves. KOS sub-systems should be written as comon programs.
They must be coded in NEAT since currently there is no other my of produc-
ing a common program.

The common program hardware works as follows. Each slave has
its storage area which is described by a base and ran. Every time an
address reference is made by a common program the base is automatically
added. Thus if a common program executes the instruction

LD 200

when the value of the base is 8192, then it will load the slave's relative
location 200, which is really location 8392. 	Similarly the same program
could be used with another slave whose base was 4096. In this case the
address would be taken as 4296. All variables associated with a common
program must be in the slave's storage area, since they will in general
have different values for each slave currently using the common program.
KOS takes care of setting up slaves, fixing the bases, etc., and sub-systems
will not be aware of which slave they are running.

The range that the hardware associates with a slave is used to
check that the slave does not upset anything outside its own storage area.
Each address is compared with the range and if it is greater the slave is
trapped (see Section 1.5).

MU+. 	 1/2
	

Kos/AAA

Common programs are distinguished from ordinary slave mode
programs by the fact that the S-register has bit 17 set. 	This ,.act
should not worry the sub-system writer since the sub-system will always
be entered with bit 17 of S set and none of the usual N AT instructions will
upset it.

Ordinary slave mode programs have bit 17 of S zero. They reside
in the slave's storage area and thus belong to one and only one slave; the
base is automatically added to S in the same way as for addresses. Other-
wise they are similar to common mode programs. Ordinary slrme mode is
used for such things as compiled code.

1.2 	Use of storage by KOS

KOS divides the slave storage area into two parts:

(a) The slave fixed locations. 	The first 800 or so locations, which
are reserved for fixed purposes.

(b) The user's workspace. 	The remaining slave storage, which is
allocated dynamically for files and for sub-systems rhen they need
extra storage (e.g. for large arrays, stacks, lists, etc.).

Of the slave fixed locations, locations 100-127 and 300-499 are
reserved for sub-systems to use as they please. These are called the
sub-system fixed locations. Normally 300-499 are used for variables and
100-127 are reserved for extra-codes or for some other special requirement.
Thus the variables for a sub-system are normally declared as follows:-

DATA
LOCATE 300

VAR1
VAR2

Normally a common program uses constants as well as variables.
Although each slave must have its own copy of the variables, since these
will normally differ for each slave, it is clearly wasteful for each slave
to have its own copy of the constants, which will, of course, have the same
value for each slave.

To allow for the sharing of constants (i.e. common data) the

KN-14 	 1/3
	

KOS/AAA

hardware provides the following feature: if bit 21 is one in an address
reference, the slave base is not added on (nor the range checked) but the
address is taken as absolute. 	To facilitate this KOS sets a fixed location
(called ,aJBIT21) in each slave area to contain the value where bit 21 is one
and the remaining bits zero. Hence if a common program contains the instr-
uctions

LDR
LD:M 456

the value of absolute address 456 will be loaded. Note that it is necess-
ary to use modified (a.possibly indirect) addressing when referring to
absolute addresses since direct addressing only allows for 15 bits.

Sub-system writers should not construct their own bit 21 nor place
bit 21 in constants, but should always use the fixed location ZUBIT21. This
is because LUBIT21 sometimes contains an extra adjustaent to make sub-systems
run under DES-2.

As an example, assume that a common program wishes to use a constant
called PI. PI would be declared under CONST or FCONST in the ordinary manner.
As a result of this one copy of PI would be assembled into an absolute loc-
ation in the program area in the normal way. Then a reference was made to
PI it would be done thus '

LDR
FL:M 	PI

A straight reference to PI, such as

FL 	PI

would be incorrect since the hardware would add the slave base to the
absolute address of PI.

In this manual the term absolute will be used to describe a
pointer or address that contains ,a1BIT21 and refers to the C07:ST area;
the term relative will describe an address or pointer that refers to the
slave's storage area, since the base is added to such pointers or addresses
by the hardware. 	In general, however, the word "relative" will normally
be omitted and when "pointer" or "address" are used they should be under-
stood to be relative.

.3 	Notes en addressim

(a) The contents of absolute addresses, referenced using ZUBIT21 1 may
only be looked at. 	Tte_conteptsst not be chanFed. 	If an attempt
is made to do so the hardware forces a trap.

(b) V-literals, if used, must be treated exactly as constants, i.e.,
LUBIT21 must be used.

KNL4 	 1/4 	 KOS/AAA

(c) Signposts and interchapter jumps require special action and it
is usually best not to use them.

(d) If variables are to have initial values, or if for some reason it
is desired to set up a constant in the slave area, the values must be
set up dynamically at the start of the program.

1.4 	How to write_ .a o_orT11.011 2r9P'ram

Common programs are very easy to write as they difCer so little
from ordinary NEAT programs. Simply collect variable declarations to-
gether and add

LOCATT 300

after DATA, and use LUBIT21 when referring to constants and IT-literals.

Appendix E contains an example of a simple LOS sub-system,
which is, of course, a common program.

LoLical errors
•••=1N, N.M. 	.6 e.

Some faults in slave programs cause a trap thereby stopping
execution of that slave. 	Such faults include an address (or an s-value
in an ordinary slave mode program) out of range, the issuing of an I/O
instruction or an attempt to change bit 19 of the C-register. A trap
is called a lo-fical eyror, in the slave. 	On encountering a logical error,
MCP prints an appropriate message on the control teleprinter and stops.

The subject of debugging is covered in Chapter C.

2/1

S122pter 2 Interface with KOS

2.1 COMMAN and UTILIT

In addition to any common programs that are in use
as a resultof a sub-system being called, KOS contains two
common programs for the basic control of the system; these
two programs are always in core. They are

(a) COMMAN. This is roughly the KOS equivalent
of BATCH. It recognizes and decodes commands.
In addition it actually executes all KOS commands
that are not part of sub-sytems.

(b) UTILIT. This is a collection of routines
(called UTILIT routines) that are needed by sub-
systems (and by COMMAN)including I/O, storage
allocation, command decoding, etc. UTILIT roughly
corresponds to the routines of NICE that are entered
through fixed locations (e.g. device routines,
EOUTNAME, EASSEMBLE, etc.).

2.2 Specialized utility programs

In addition to UTILIT, KOS has available some
specialized utility programs which are not always in core but
may be asked for by any sub-system that needs them. Currently
there is only one specialized utility program, namely a floating
point package called UTFLOT.

Specialized utility programs will make use of some
of the sub-system fixed locations, and will thus cut down the
number that is available to the sub-system itself.

2.3 Interface with UTILIT

All UTILIT routines are called by a JIL to a slave
fixed location. In addition to the slave fixed locations used
for its entry points, UTILIT maintains certain quantities,
called the public values, in slave fixed locations in order that
sub-systems may examine them. Examples of public values are
buffer pointers, line counts of I/O, EUBIT21, etc.

Since the usage of slave fixed locations is liable
to change, LOCATEd symbolic names must be used for all slave
fixed locations. This includes the sub-systems own variables
in addition to the locations associated with UTILIT.

2/2

The names of the UTILIT fixed locations all begin
with U. If the usage is concerned with I/O the second letter
indicates the device concerned as follows

C means the command device.
M means the message device.
D means the data device.
R means the results device.

Thus the routine that outputs a character on the message device
is called EUMCHAR.

The UTILIT routines and public values are described,
under the various functional classifications, in the Chapters
that follow. Summaries and tables of where names are LOCATEd
are given in Appendices A and B.

2/1 Using UTILIT routines

Several of the UTILIT routines have parameters.
These are passed in R and/or M. It is the usual convention
that R is used for pointers and M for individual characters.
Numbers and S-values may be in either R or M. In some cases
UTILIT automatically adds bit 21 to R. Several UTILIT routines
also produce results. These are returned in R and/or M as
appropriate.

Some UTILIT routines have several exits. The routine
EUDLINE (get a line of data), for example, returns to the
instruction following the point of call in the error case (when
there is no data left) and skips one (full-word) instruction
in the normal case. A number of UTILIT routines, therefore,
are said to have N exits; the first being called exit 1, the
second exit 2, etc., where exit j means j full words beyond the
calling instruction. When a routine is said, simply, to return,
this means it uses the last exit.

The same conventions normally apply to EXENs (q.v.)
and routines in specialized utility programs.

A number of UTILIT routines that have pointers as
parameters (passed in R) assume that the pointer is always
absolute (i.e. the item !Pointed at - for instance, a message or
a table - is in the CONST area), and hence automatically add
bit 21 to R to save the sub-system the trouble of doing so.

KNL5
	 2/3

If, in some special case, the sub-system wishes to supply a relative pointer
as parameter to one of these routines, it must subtract c:CUBTI21 from R.

2.5 Communicatiimmith MCP

In some cases it is necessary for a sub-system to communicate
directly with the master control program. This is done by the EXEN instruction
in the hardware, which forces a trap. The address field of the EXEN indicates
the operation required. The permissible operands are all LOCATEd since their
numerical values are liable to change. The EXENs that are available are
described in subsequent chapters and a complete table of them is given in
Appendix C. One EXEN that is useful in debugging is LLOGERR, which forces a
logical error and sets up information for a post-mortem dump. Due to a defect
in NEAT, EXENs have to be written as N:750/exen name in the address field.
(See example in Section

EXENs may have parameters, results, multiple exits,etc., just as
UTILIT routines.

2.6 Enterin,E and exitirla_fr_om a sub -ustem
•-••

A sub-system is entered by typing its name when in command status
in KOS. The name is normally followed by a tofrom (see KOS User's Manual) to
specify the data and results devices to be uSea.— niiii./AN contains a table of
all the sub-system names that it recognizes as commands in themselves (e.g.
BASIC, DESK). If the writer of a sub-system wishes its name to be added to
this table, he should contact the writer of this manual. Otherwise the sub-
system can always be entered using the ENTER command.

The first three instructions of each sub-system are entry points
from COMMAN. They are as follows:

Initial entry. When COWAN initially enters a sub-system
it enters it at its first instruction. The input buffer
pointer (LTIBFPT, see Chapter 4) is set to point at the
first character of the argument list of the entry command.

(2) Brealtrz. When a break is accepted when within a sub-
system, COWAN enters the sub-system at its second in-
struction. For a description of how sub-systems can
arrange to allow or inhibit breaks, see Chapter 6.

(1)

2/4

(3) Get-off entry. If a sub-systern- is entered at
its third instruction it must immediately release
all its resources and surrender control to COMAN.

The first instruction of a sub-system (i.e. the
initial entry point) must always be a "JF 4" instruction.
This is used as a marker to indicate to the ENTER command
that the program is indeed a KOS sub-system.

Thus a sub-system might commence as follows:-

CODE
JF 	4
JF 	*BREAK
JF 	*ABORT

An exit is made from a sub-system by obeying the instruction

JI 	EUEXIT

2.6.1 	Messages on entry and exit

A sub-system should output an appropriate message
when it is successfully entered initially and again when it
exits. The introductory message should identify the sub-system
(including which version it is) and make it clear it is starting
from scratch. Typical introductory messages might be "DESK
CALCULATOR (VERSION KNL3A) READY TO START", "I AM A CHESS
PLAYING MACHINE (VERSION KNL1B). TO START THE GAME
Typical messages on exit might be: 'EXIT FROM DESK CALCULATOR",
"GAME TERMINATED". The introductory message should normally
be output when all the basic extras have been borrowed
(see Section 3.5) and the exit message immediately before going
to EUEXIT.

KN15
	

2/5 	 KOS/AAA.

2.7 	Namillasstems_

Any identifier of 	up to eight characters can be used as a
sub-system name, except that names beginning with "UT" are reserved for
sub-modules and specialized utility programs. If a name begins with "UT",
KOS does not update its count of job steps (see "How to run KOS") when it
is entered.

Hence if a sub-system consists of several modules which are
loaded separately then the name of the main module should not begin with
"UT" but the names of the remaining modules should.

When a sub-system is to be used it should be entered by means
of the ENTER command; the only exceptionsto this are popular sub-systems like
BASIC whose names have been added to a special table in COMIN to make them
global KOS commands.

2.8 	Looking at MCP fixed locations

Some very specialized sub-systems, particularly those concerned
with timing or monitoring, may wish to look at MCP and the fixed locations of
the world it operates in (i.e. a DES-2 slave or the DES-1 or T30C system).
These fixed locations must be addressed using a public value called ZUKBIT21
in an exactly similar manner to the way ,,CUBIT21 is used to address the CONST
area. Usually r£UKBIT21 and ZUBIT21 will have identical values, but differences
are possible in the DES-2 environment.

Lists of MCP fixed locations are not publicized, but they can be
obtained from the author.

3/1

Chapter 3 Use of extras

3.1 Extras

Sub-systems have available to them a collection of
extras, i.e. supplementary facilities for those sub-systems
that need them. The extras that are available are results
and data devices, blocks of contiguous storage taken from the
user's workspace, and specialized utility programs. When a
sub-system is entered it has no extras; the extras that are
needed can be borrowed dynamically. They must, however, always
be returned before the sub-sytem exits, irrespective of how
the exit is made. This Chapter describes how extras are borrowed
and returned.

3.2 Data and results devices

Most entry commands and sore sunplementarv commands
allow a tofrom as the last argument. There is a routine in
UTILIT called EUSETDEV to decode tofroms (including null tofroms)
and allocate the necessary I/O devices. EUSETDEv must be called
with EUIBPPT pointina at the tofrom 	(see Section 4.4).
This will always be the case on entry to a sub-system provided
that there is no argument between the sub-system name and the
tofrom and provided no input is requested (e.g. by a question-
and-answer) before EUSETDEV is called. EUSETDEV has a
parameter in M, which has two possible values

J1) zero means get results device only.
(2) two means get both data and results devices.

EUSETDEV has two exits. If the tofrom is syntactically
incorrect, or if the required devices are not available,
EUSETDEV allocates no devices to the sub-system, outputs
the appropriate messages and uses exit 1. Otherwise it
allocates the required devices, sets the public values
describing them (see Section 4.4.2 and Appendix A) and uses
exit 2.

It is possible to call EUSETDEV several times
within a sub-system (e.g. for the entry command and then for
subsequent supplementary commands), but before an attempt is
made to borrow a new data/results device the previous one(s)
must have been returned.

3/2

EUSETDEV should be called_ with -breaks allowed (since
the user may be made to wait for a device) and it always
returns with them allowed.

The data and/or results devices are returned
by calling EUDREND. EUDREND performs the following actions;

(a) it clears the message buffer (see Section 4.3.1).

(b) if a results device is currently borrowed,
it clears its buffer, closes the device
(see User's Manual) and returns it.

(c) if a data device is currently borrowed, it
closes it and returns it.

It is quite legal to call EUDREND as a safety measure even
if no devices turn out to be currently borrowed.

EUDREND is automatically called by UTILIT whenever
a break occurs or when either of the routines EUEXIT or
EUCLINE (q.v.) is called; this means, in fact, that the data
and results devices are automatically returned whenever they
need to be, namely on exit from a sub-system or when a new
command is input, and so it is not often necessary for a sub-
system to call EUDREND explicitly.

3.3. User's workspace

The routines EUPSPACE and EURSPACE are used for
borrowing and returning blocks of storage from the user's
workspace.

EUBSPACE has one parameter (in R) and two exits.
It returns a result in R.

EURSPACE has one parameter (in R), only one exit
and no result.

Breaks must be inhibited when either routine is called,
and the routines will leave them inhibited on return. It is
possible to borrow any number of blocks of workspace of any
size, subject to available space.

3/3

3.3.1 Borrowing user's workspace

EUBSPACE is used to borrow user's workspace. The
parameter specifies the size of the block required. This must
exceed zero.

If the requested amount of workspace is available,
EUBSPACE allocates it to the sub-system and uses exit 2. The
result in R is a pointer to a block of workspace of the size
requested or perhaps one word larger. The second word of the
block will contain its actual total size.

If there is not enough room, EUBSPACE uses exit 1.
In this case the result in R is a pointer to the largest
available block (with its size in the second word). The
block is not, however, allocated to the sub-system. Hence to obtain
the largest available block of workspace, the followina
instructions should be executed:

LDR:L
JIL
JF
JF
LDR:M

32767
EUBSPACE
2
6

Impossibly lar7e request.

Not available.
Is available!
Load size of largest
available block.

JIL
	

EUBSPACE
N:750/ELOGERR Should be impossible.

Preserve R, etc.

If a sub-system is such that it must have a certain
amount of workspace, there is a UTILIT routine call EUNOROOM
which is useful for the case when that workspace is not available.
EUNOROOM outputs the message

NOT ENOUGH WORKSPACE - BREAK

and then enters the sub-system exactly as if a break had
occurred. This applies even if breaks are inhibited. Thus
a calling sequence for EUBSPACE might be

LDR:L
	

100
JIL
	

EUBSPACE 	Ask for 100 words.
JI
	

EUNOROOM 	Not available.

The internal workings of EUBSPACE have been designed
to minimize the fragmentation of user's workspace.

3/4

3.3.2 	Returning user's workspace

EURSPACE is used to return user's workspace. The
parameter in R must point to the block to be returned. The
length of the block must be in its second word. (Hence when
workspace is used it is best to leave the first two words
intact.) All workspace must be returned before exiting from
a sub-system.

3.4 	Specialized utility nrograms

Specialized utility programs are borrowed and
returned by communicating directly with MCP by means of the
EXENs EBORPRG and ERETPRG.

To borrow a program EBORPRG is used. It has two
exits. The parameter in R is an absolute pointer to the
name of the program to be borrowed. However, bit 21 should
not be included in R since it is added automatically. The
name should be stored in two words of packed internal code
characters, padded with blanks on the end. If the program
is not available, EBORPRG uses exit 1. If it is available,
EBORPRG uses exit 2 and gives the S-value of the start of the
program (with bit 17 one) as the result in M. In either
case breaks are inhibited on return, and the contents of R
are not changed from their calling value.

To cater for the error exit from EBORPRG, there is
a UTILIT routine EUNOPRG, which cutouts the message

'program name NOT AVAILABLE (NOW (THIS SESSION)

and goes to EUEXIT. However, EUNOPRG should only be used
when there is no workspace and no other programs to be returned.

A typical calling seguenco for EBOPPPG would be

CON ST
UTNAME
	

C:UTFL
C:OT

3/5

LDR:L 	UTNAME
N:750/EBORPRG

JI 	EUNOPROC
ST 	UTENTRY

JIL 	UTENTRY

R points at name.

not available.
save S-value.

enter program.

Specialized utility programs are returned using
ERETPRG. The parameter in R should contain the S-value of
the program to be returned, exactly as it was supplied by the
corresponding EBORPRG. Hence continuing the example above,
the returning sequence would be

LDR 	UTENTRY
N:750/ERETPPG

3.5 Ordering requests for extras

Ideally a sub-system should start by borrowing
any necessary specialized utility programs. It should then
borrow its workspace. Up to this point breaks should remain
inhibited, as they are on entry to a sub-system (see Chapter 6).
Finally, it should allow breaks, borrow its devices, and if
this succeeds, and only then, it should output its introductory
message (see Section 2.6.1). Sometimes it may net be possible
to follow this sequence, for instance it might be desired to
ask the user how much workspace he needs. However, in all cases
it should be ensured that, however an exit is made, exactly
those extras that have been borrowed are returned. Great care
should be taken if an exit is caused by a break.

KNL5 	 3/6
	

KOS/AAA

Runnirig,in executive mode _

There is a facility for sub-systems to switch into executive mode
in order to do something that is impossible in slave mode. (By "executive mode'
is meant the level above the usual KOS slave mode, i.e. the level at which MCP
operates; this may, in fact, itself be slave mode relative to DES-2.) This
facility is fraught with dangers and should only be used as a last resort.
When running in executive mode the program is untimed, unbreakable and un-
protected. Executive mode code should therefore be designed so that it does
not do any of the 'ollowing things whatever errors mlIT occur:

(a) use a device that does not belong to it.

(b) get into an endless loop.

) execute an error exit such as

JI 	LEND

Executive mode is entered by the following EXEN command

N: 750AS'NEXEC

This returns at the next instruction with R and M unchanged. To return to
slave mode the instruction

JIL RMTOSLAV

should be obeyed.. This also returns at the next instruction with R and M
unchanged. (In actual fact MCP goes down the scheduling queue before return-
ing to the original program. This prevents executive mode programs getting
too big a share of the available time.)

The following example shows how executive mode could be used to
punch an undecoded character on paper tape. The paper tape punch must have
been borrowed before this code is entered,

LD 	CHLR
N:750/SWEXEC

LDR:L 	3
JIL LPOUT
JIL RATOSLAV

Note that when a program is in executive mode its view of the
world is completely different from in slave mode. In particular, when in
executive mode, slave fixed locations cannot be addressed directly, The
CONST area should be addressed using modified addressing relative to a
location called gMBIT21, rather than the usual JCUBIT21, where SMBIT21 is a
fixed location provided by MCP. MCP provides some fixed locations for use
as temporary variables by executive mode programs. Theizie are described in
Appendix C. Note.1_4opver., that_their values will not remain intact between
one executive mode ontr2_and the next. Executive mode programs should be
very wary of changing any locations other than these MCP fixed locations and
location O.

KNL/4. 	 4/1
	

KOS/AAA

Chapter 4 Tpput and output

4.1 	Introduction - ars-Or-AW-arn. ALA,

A sub—system will, in general, be completely unaware of
which I/O devices it is using. It will perform all is I/0 on a line —
at —a—time or character—at—a—time basis using UTILIT routines.

Devices are automatically opened (e.g. sup-plying of run out
at start of paper tape, form feed on printer) before they are first
used; devices are closed when ZUDREND is called.

Note that the command and message devices always exist but
the data and results devices only exist if they have been successfully
borrowed and not subsequently returned (either explicitly by ZUDREND or
implicitly by, for example, a break). An attempt to use a non—existent
device causes an immediate logical error.

4.2 	Character codes
caw. 	 At....1.ANV-AALMCJIAL.A.. -Jr.

Apart from the routines for the output of messages (see
ZUMSTRI etc.), all UTILIT routines work in single characters or lines
of characters in KOS 7—bit code stored one to a word in a buffer. KOS
7—bit code is a sub—set of the standard 4100 7—bit code (i.e. internal
code with 64 added for out—shift characters). The characters omitted
from the standard code are carriage return, null and halt code.

KOS uses the standard 4100 device routines to convert from
external representation to KOS 7—bit code. Whatever the input medium,
each line is terminated with a .nqwWle .character (internal code 2) when
the line is converted to KOS 7—bit code. 	Characters not in the KOS 7—bit
code are ignored on input, and are automatically supplied on output when
the physical device warrants them. The way this is done is described
in the KOS User's Manual and in device routine specifications. Tabs
are treated just as any other character by K03; the way they are represented
externally is determined by the device routine for the .avice that is
used.

Where not otherwise stated, the word "character" should hence—
forward be taken to mean "KOS 7—bit code character".

4/2 	 KOS/AAA

yo 	. Output

The sets of routines for output on the message device are exactly
similar to those used for the reaults device, so they are described in pairs
below.

UTILIT maintains two buffers, one of 126 characters for the current
line of results and one of 67 characters for the current line of messages.
Characters are added to these buffers until a newline is supplied, and then the
whole line is output. If either of the buffers is about to overflow (i.e. a
character other than a newline is fed to the buffer when it is already full),
the newline is automatically supplied in order to output the buffer and the
next character is placed at the start of a new line.

UTILIT routines for cutput

The following are specifications of the output routines in UTILIT.

A. £UMCHAR, XURCHAR

Output the character in M.

B. EUMVAL, XURVAL

Output, as a decimal number, the binary value in M. Redundant
leading zeros are suppressed and the sign is printed only if the number is
negative. No extra spaces are supplied either at the beginning or the end
of the number.

C. XUMSTR, ZJRSTR

Output the 2dbitcod2 string pointed at by I. 	(Packed
6-bit code means the standard 4100 internal code, with characters packed four
to a word. The same characters are permissible as in KOS 7-bit code.) It is
imagined that the string will always be in the CCNST area so R is an absolute
pointer. However, it should not includeaILTP21 as this is automatically added
by UTILIT. The string may include shift characters. It must end with either
a newline (in-shift 2) or an end marker; the latter is represented by out-shift
octal 15. 	If the string ends with a newline, this is output as part of the
string. If the string ends with an end marker, the end marker is not taken as part

Rel. 1

4/3
	

KOS/AAA

of the string; no newline is supplied and so subsequent characters that
are output on the same device follow on the same line. Since a newline
ends a string, it can be seen that it is only possible to output one line
at a time.

(There is a special facility which applies
occurs other than at the end of a word. In this case
octal digits is examined. Let N be the value of this
Then the previous N characters of the string preceding
are deleted, for example

if an end marker
the next pair of
octal number.
the end marker

C:ABCD
C:EXXX
0:761000

means the string "ABCDE" since X has value 3. The purpose of this feature
is to avoid having to write characters as octal constants in 7r21.2. 	The
feature will not work properly if the characters to be deleted overflow
the buffer. In general end markers should be padded to the right with
zeroes so that the above feature is not used by mistake.)

It is not reouired that a string occupy an integral number
of words; apart from the special facility described above anything beyond
its terminating newline or end marker is ignored. It is always assumed
that a string starts in in—shift, irrespective of any preceding output.

The word Aty_inf, will henceforward be used to mean a string
of characters fitting the above specification.

D. L'UMCSTR, MRCSTR

Similar to ZUMSTR and eCURSTR except that the string is placed
at the start or a new line. This is done by outputting the appropriate
buffer if it is not initially empty; this is called clearinf,_t_hp buffer
(hence the IC I).

E. MILCOM

gUILCOM is a very specilized UTILIT routine. 	It prints
the message "ILLEGAL COMMAND" and returns.

F. RUMLVAL, RURLVAL

Similar to ,1:1J1,1V.LL and ZURVU except that the parameter in M
must be ih,the range 1 to 9999 and this number is output followed by a
dot and enough spaces to make five characters in all. 	(This is the
K03 format for line numbers.)

KNL4. 	 4/4

f output .instX:uctj-0,1s

CONST
LNMS 	 C:LINE

0:00761500

OUTMS 	 C: OF
C:OUTP
C:UT"

KOS/AAA

8Pce * end- marker.

In card Nall' format.

CODE

LD:L C: X
JIL 	MMCHAR
LDR:L 	LNMS
JIL 	RUMCSTR
ma 	6
JIL 	RIVAL
LDR:L 	OUTMS
JIL 	ZUMSTR

would output the messages

***LINE 6 OF OUTPUT

(The asterisks at the gi;.ari, af messares are automatically supplied by
UTILIT.)

4.4 Input
alkalltiall..4.1014.6811.1111taiii•M 	 -

The most important thing to remember about the input routines
is that there is a single input buffer (of 126 characters). Thus if a li-
no e-.d.atalsread, this will overwrite any command or anszer to a question-
and-answer that was left in the buffer, and vice versa.

The input buffer is described by the three public values
XUISIGST, gUIBFMAX and 2UIBFPT. LUISIGST points at the first significant
character in the buffer (i.e. the the first character the sub-system should
look at - this is the character following the "Se" for a command, the answer

KNL4 	 4/5
	

KOS/AAA

to a question, the first significant column for card input, otherwise
normally the first character in the buffer), gUIBFPT points at the next
character to be scanned and 6CUIBFMAX points at the newline at the end
of the buffer. These pointers are set every time a line is read, the
initial value of gUIBFPT being the same as 2UISIGST. In addition) the
routines that scan the input buffer start their scanning at ,.alIBFPT and
update gUIBFPT to the end of their scan; routines in this category are
2UDECODE, LUSETDEV,LUDCHAR and gUIBCHAR. A sub-system can,if it wishes,
change the value of 2UIBITT but care should be taken if any of the above
routines are being used on the same buffer,

Commands and data are automatically listed by UTILIT when
the circumstances warrant (see KOS User's Manual).

Illput of commands

The routine 2UCLINI: is used to input commands. 	It reads a
line from the command device and rcturns. There is no error exit as it
always continues to request input until it gets a command. The "&"
preceding the command is not taken as part of the command and 2UIBFFT
and 2UISIGST will be set to point at the character beyond it.

ZUCLINE automatically calls .-CUDREND to return any devices
associated with the preceding command.

11 4.2 	Iralt of data
a 	ae-aarW

Data can be input using gUDCHAR or RUDLIN13. Each of these
routines has two exits, the first exit being an error exit for the case
where data has been exhausted. The data terminator (full stop on a console,
halt code on paper tape) is not taken as part of the data and directly it is
encountered the error exit is taken. 	(However, the device is not automati-
cally returned when the terminator is found; it is only returned when 2UDREND
is called. This is because returning a device often produces a message and
it might upset the output format to output this message at the wrong time.
Both LUDLINE and. LUDCHAR "stickflat the data terminator and will continue
to give the error exit on all calls until the data is replenished by ZUSETDEV.)
If a command is encountered when an attempt is made to input data, the error
exit is taken but input is "backspaced" so that the next gUCT,In] reads the
same command.

If a pseudo-command is input from the data device, UTILIT
automatically processes it and inputs the next line. 	Thus sub-systems
do not need to worry about them.

Four public values can be used to control the reading of data.
They are initialised by gUSETDEV, but may subsequently be changed by sub-
systems. 	The variables are as follows:

KNL4 	 4/6 	 KOS/AAA

Name 	Inal 	 im value 	 Meani ..:,.___... 	—._...

LUDLINO 	 0 	 Line number of input data,
updated each time a lino is
read - useful for error messages.

LUDCDST 	 1 	 Starting column if data is from
cards.

gUDCDEND 	72 	 Last column if data is from cards.

LUDLIST 	 0 	 (2 means list with line numbers.
(1 means list.
(0 means don't list.

(The value of LUDLIST is controlled dynamically by the DLIST and DUNLIST
commands and the LIST and UNLIST pseudo-commands.)

The exact specification of the tvro data input routines is
as follows.

DIDLIN7 tries to input a line of data. 	If it succeeds it uses
the second exit; if it fails it uses the first.

RUDCHAR tries to input a single character of data. 	If it
succeeds it places the character in M and uses the second exit; if it fails
it uses the first. 	(Except when it needs to input a new line, ..CUDCHAR
simply performs the action:

LD:I 	 2UIREPT
COMP :L 	 2 	 NE7LI1\TE
JZ 	 2 	 NEWR ADVAITC: LUIRPP.2 BEYOND
INCS 	 ZUDIPPT 	TERMINATING- NEITLINE

Although LUIRWT is not updated when a newline is encountered, a special
marker is set so that on the next call to MCHAR. a new line is input.)

_Questions-and-answers

aTCQLINE is the UTILIT routine for command cuostions-and-answers
and LIJMLINE is the corresponding routine for data question-and-answers.
The former has a parameter in R and the latter has paraneters in both
R ant M. 	Both routines have two exits. 	ZUCnLINr, sets up the ouestion
in the message buffer and ,arDQLINE sets up the cluestion in the results buffer.

IZTL4 	 4/7
	

NOS/AAA

In both cases the question must fit into the buffer. 	In most uses of
.EUCUINE and LUDQLIN:r, the question is a predefined string. 	In this case
the parameter in R points at the string, in a similar way to the parameter
to LUMSTR. The appropriate buffer is then cleared am.. the string is
then copied into the buffer and taken as the question. The string must
be terminated with an end marker (and therefore it cannot contain a newline).
An alternative way of using ,EUCQLINE and LUIrLINE is to place the question
in the appropriate buffer in advance and then to call the routine with R
zero. This is useful if the question contains some variable clement.

To avoid confusing the user, questions should never begin with
an ampersand or colon. They should normally end ith an equals sign.
(There is no question mark character on a 4130 console.)

The parameter in M to £1.JDLINE determines whether the question
is to be compulsory. Zero means compulsory and one means optional.

In all cases exit 1 is used if the ouestion is unmatched.
(This can only occur in the non-conversational cac:.) If the question is
optional the input medium is "backspaced" so that the same line is read
again on the next request for a line from the device (in fact it is even
possible to try to match the line with a different question); in the
compulsory case an error message is produced and no backspacing takes place.

Exit 2 is used in all other cases. The answer is placed in
the input buffer, in the same way as for LUCLINE. The routine LUDECODE
(q.v.) is very useful for decoding the answer. The action of a sub-system
on getting an unsatisfactory answer should normally be to repeat the question.

Unlike 01CLINT, gUCUINT3 does not release the data device.
However it must not be called when the data device is in a "backspaced"
state as described above since this would corrupt the buffer. 	(Hence
KOS forces a logical error if this happens.) Therefore LIP;QLINT; must
not be called immediately after a call of ;131Y'LIN-.1 with an optional question.

One last point. If gUDCHAR is used to scan ordinary data
immediately after OJDO,LINE, it is necessary to perform an initial call
of LTDLINE. This clears out any data left in the buffer after LUDQLINE.

y.4.4 	Examnle of use of ZUCOLINE

Here the question is "CONTI=ION." and the answer must be
"YES" or "NO".

IcNL14. 	 4/8 	 KOS/AAA

CNTHS

YNTAB

CONST
C:CONT

C:TION
0:35761500 	 Equals plus end marker.

NOTE 	DECODE TABLE -SEE CHAPTa 5
3
C: 	Y 	 If YES,
C: 	E
C: 	S
2 	 ...use exit 2.

2
C: 	N 	 If NO,
C: 	0
4 	 ...use exit 3

-4 	 If anything else,
...use exit 1.

CODE

ASK 	LDR:L 	CNTMS
JIL 	aCUCLINE
JF 	ERROR 	 Error exit.
LDR:L 	YNT"tB
JIL 	DJDECODE
JB 	ASK 	 Unmatched answer.
JB 	CONT 	 Answer YES.

Answer NO.

As a second example, if the line labelled ASL and the line that
follows it were replaced by the lines

aK 	LD 	CHAR
JIL 	aiRCH2T.
LD:L C: =
JIL 	STRCHAR
LD:L 	0
LDR:L 	0
JIL 	LUDr!LINE

Compulsory Luestion.
Use buffer as cuestion.

where the variable CHAR contained the letter "C", then the effect would
be identical to the above except that the ouestion would be "C=" and it
would be a data question-and-answer rather than a command one.

4/9 	 YOSAAA

y„24,5 	Iuutof characters from the buffer

The routine OJIBCHAR can be used to get the next character
from the input buffer, irrespective of the nature of the line in the
buffer. LUIBCHAR has 3 exits, depending on the nature of the character
found.

semicolon).

or comma).

Exit i is used if the character is a terminAor (newline or

Exit 2 is used if toe character is a separator (tab, space

Exit 3 is used otherwise.

The character is returned in M and CUIBITT is increased by
one, except when the first exit is used. 	It can be seen, therefore,
that IJIBCHAR never reads beyond the terminator of the current line.

Lti 	Identi.ty of I/0 devices

It is possible for a sub-system to find out that physical
devices are in use by examining the four public values : MCDVB, EXDDVB,
RUMDVB, EURDVB. These contain the KOS device number (see "How. to run
KOS") of the command, data, message and results devices. The value
500 currently means that the device does not exist a value exceeding
600 means that the device is a job file, and a negative value means a
DC.

It is soinetimes useful to examine if certain devices are
the same. For example if LCUCDVB eouals LUMDVB, KOS is in conversational
mode, and if EUDDVB equals RITEDVB there is no point in givins a line number
in an error message (similarly if ZURDVB equals RUMDVB and ,CUDLIST exceeds
zero - if the reader can work that one out).

It is very bad practice to test the indiviaual values of
the various device numbers since one of' the central principles of KOS
is that it be device-independent. Moreover, the device numbering system
is likely to change when KOS is extended.

5/1

Chapter 5 Decoding of Input

UTILIT contains a very important routine, called
EUDECODE, which is useful for implementing supplementary
commands, dealing with arguments to commands, processing
answers to questions-and-answers and, in some cases, processing
data.

EUDECODE works on the set of characters in the input
buffer, beginning with the character pointed at by EUIBFPT. It
first advances EUIBFPT if necessary to scan over separators
(commas, spaces or tabs) until EUIBFPT points at a non-separator.
It then scans for the next senarator or terminator (semi-colon
or newline). The set of characters in between is called the
decodes; note that if the first character scanned is a
terminator, the decodoawill be null. Except where otherwise
stated, on return from EUDECODE, EUIBFPT is further advanced
(if necessary) to point at the first non-separator beyond
the end of the decodee. This facilitates the use of EUDECODE
to process several successive decodees on a line.

Example

26, 35

EUIBFPT

If EUDECODE were called with EUIBFPT pointing as indicated
above, the characters "26" would be the docodee and on return
EUIBFPT would point at the character "3".

The action to be performed by EUDECODE is controlled
by the decode table. The parameter of EUDECODE, which is in R,
is an absolute pointer (but with bit 21 omitted, since this is
added automatically) to the decode table.

The (3ecode table consists of a set of contiguous
table entries. The first word of each table entry identifies
the type of entry. The various types of entry have different
lengths. In most cases the last word of an entry is a return
offset. This means that if EUDECODE matches the table entry
(see later) it is to add the return offset to the link before
returning to the calling program. Thus if the return offset
is 2, EUDECODE will skip one instruction on its return to the
calling program. A return offset of minus one is interpreted
as "go back to start of decode table."

N characters I return offset

5/2

One clas.i of table entry will match the decodee
only if the decodee is of a certain form, a second class will
always match, and a third will never match. Vembers of this
third class have no return offsets; they are effectively
unconditional commands to EUDECODE.

EUDECODE scans the table entries one by one,
performing the action of each, until a match is found that
causes it to return to the calling program. The table must
end with an entry that will match any decodee (i.e. one of the
entries listed in Section 5.1.2 below).

5.1 Types of table entry

The types of table entry are listed below; their
names have no significance except for description and
documentation. Section 4.4.4 contains an example of EUDECODE
and there are other examples at the end of this Chapter.
Appendix D contains a summary of the types of table entry.

5.1.1 	Conditional matches

The following types of table entry match the decodee
only if it is of a certain form.

A. FIND table entry

Format

N 0

The N characters are in KOS 7-bit code and are stored
one to a word. FIND matches the decodee only if it corresponds
exactly to the given N characters.

B. GETNUM table entry

Format 	-1 binary integer 1 binary integer 2 return offset '

GETNUM matches the decodee only if it is, in character
form, a (possibly signed) integer not less than binary integer 1
and not greater than binary integer 2. When a match is made the
value of the decodee is returned in M.

5/3

5.1.2 	Unconditional matches

The following types of table entry will match any
decodee.

A. SYSDO table entry

Format -2 	return offset

Treat the decodee as a global KOS command. If
it contains no errors it is executed; in this case SYSDO
will return to the calling program at the get-off entry
point if the KOS command is one that causes an exit from the
current sub-system (e.g. entry commands, JOB, EXIT), and
at the return offset from the point of call otherwise. If
the decodee is not a correct global KOS command the appropriate
error message is output and a return is made at the return
offset from the point of call.

SYSDO automatically performs the action of EUDREND.

The setting of EUIBFPT after a SYSDO is indeterminate.

B. ERROR table entry

Format I -3

return offset

The message "ILLEGAL COMMAND" is output and a return
is made to the calling program at the given return offset.

C. ALL table entry

Format -4 1 	return offset

A return is made at the given return offset.

D. RESET table entry

Format -9 	return offset I

RESET is the same as ALL except that, on return,
EUIBFPT is left to point to the first character of the decodee, so
that it can be re-scanned if necessary.

5/4

5.1.3 	Non-matches

The following types of table entry never result in
a match; they therefore contain no return offset.

A. GETCOM table entry

V

Format

EUCLINE is called. (Two features of EUCLINE should
be noted in this context because of the side effectsthat they
may have: firstly that it calls EUDREND; secondly that it
resets EUIBFPT.) 	GETCOM can only occur as the first entry in
the table; when it does, the decodee is taken from the start of
the new line input by EUCLINE, not from the line that was in
the buffer when EUDECODE was called.

B. ISLAST, NOTLAST, CANLAST table entries

Formats ISLAST

NOTLAST

CANLAST

77

-6

(1) ISLAST means that subsequent conditional matches are only
to succeed if the first non-separator beyond the end of the
decodee is'a terminator (i.e. in the case of a command line,
if the decodee is the last argument or a command with no
arguments).

(2) NOTLAST means that subsequent conditional matches are only
to succeed if the first non-separator beyond the end of the
decodee is not a terminator.

(3) CANLAST means that subsequent conditional matches are
to be independent of what follows the decodee.

Any occurrence of one of these three table entries
overrides any previous one. Initially CANLAST is always
assumed.

5/5

5.2 Examples of decode tables

1st Table Entry

Example I
Neat addressComment

field
-5
4

GETCOM
FIND

C: C
C: 0 2nd Table Entry
C: N
C:
0 Return offset
-8 ISLAST] 	3rd Table Entry
2 FIND
C: *G 4th Table Entry
CI 0
2 Return offset
-2 SYSDO

Go back to start of table
] 	5th Table Entry

This decode table recognises two commands:
CONT and GO. 	The former may have arguments, the latter
cannot. Any alobal KOS commands are executed without returning
to the calling program. A call of 2UDECODE using this table
would have two exits, the first for CONT and the second for CO.

Example 2

-1 	GETNUM
-32768 	Lower bound
-1 	Upper bound
O Return offset

GETNUM
O Lower bound
O Upper bound
2 	Return offset
-1 	GETNUM
1 	Lower bound
32767 	Upper bound

Return offset
O FIND(matches null decodee)
6 	Peturn offset
-A 	ALL
8 	Return offset

(continued overleaf)

1st Table Entry

2nd Table Entry

3rd Table Entry

4th Table Entry

5th Table Entry

5/6

This decode table tests if the decodee is a negative,
zero or positive inteaer or if it is null. A call of EUDECODE
with this table would have five exits as follows!

1st

2nd

3rd

4th

5th

exit

exit

exit

exit

exit

negative number

zero number

positive number

null decodee.

anything else.

(in

(in

(in

6/1

Chapter 6 Breaks

6.1 Routines for breaks

UTILIT contains two routines for controlling the
break status, viz:

EUALBRK
EUINBRK

Allow breaks.
Inhibit breaks.

Neither routine has any parameters nor any results. If the
console user tries to break while breaks are inhibited the
break is "remembered" and comes into effect immediately breaks
are allowed again. When a sub-system is entered (by any of
the three entry points) breaks are inhibited by COMMAN.

The action of UTILIT on a break is to inhibit breaks,
call EUDREND, output the message "BREAK" and enter the sub-system
at its break entry point.

A sub-system can cause a forced break when some
unrecoverable condition has occurred. This is done by calling
the routine EUBREAR with A pointing at a string as for EUMSTR.
UTILIT performs the same action as for a user generated break
except that it prefixes the message "BREAK" with the string
pointed at by R. This string should, therefore, be terminated
by an end marker (rather than a newline) so "CREAK" (which
is preceded automatically by a space) can follow on the same
line. EUBREAK is used by EUNOROOM, the message being
"NOT ENOUGH WORKSPACE - BREAK". 'Forced breaks occur even
if breaks are inhibited.

6.2 What o do at a break

The easiest thing to do on a break is simply to
exit. This is, however, only really acceptable to the user in
the case of a simple sub-system. In more elaborate sub-systems,
which may perform several different actions in a sequence, the
user would be very annoyed if a break in one step invalidated
all his previous work. For example he might have compiled a
program and be in the process of testing it against several
sets of data when one set caused the program to go into an
_endless loop. What he would like to do is break the run
without losing his compiled program. Moreover he would like
to be able to examine the values of variables to try to find

6/2

out what went wrong. In other words he wants his compiled
program, his dictionary and the values of his variables to
survive breaks.

If a sub-system is to provide facilities such as
this it must be very careful when it allows breaks. For
example if a linked list is to survive breaks, breaks must
be inhibited whenever it is in an unstable state, for example
when the chain is momentarily broken to add or delete an item.
In general, when a number of related variables describe an
entity; if that entity is changed breaks must be inhibited
until all the variables have been updated to describe the new
state of the entity. Examples are: a string described by a
length field followed by some characters, an array described
by a dope vector, a stack describing the state of a program.

Hence a sub-system needs to satisfy two conflicting
aims:

(a) Breaks must never be inhibited for longer than,
say, a tenth of a second of computing time.

(b) If reasonable recovery facilities are to be
offered, great care must be taken to inhibit breaks whenever
the sub-system can be in an unstable state.

A sub-system offering recovery facilities must return
to command status after a break to let the user say what to do
next and in particular to exit from the sub-system if that is
what he wants.

It is sometimes desirable to have different "levels"
of breaks, for example

(1) a break during initialization causes an exit.

(2) a break during compiling destroys everything
and returns to command status.

(3) a break during running aborts the run but some
diagnostic information is output and the user
can examine the values of scalar variables.

6/3

6.3 When breaks must be inhibited

Breaks are automatically inhibited by the KOS system:

(a) on any entry to a sub-system.

(b) on return from EXEN EBORPRG.

(c) after a logical error or after a job stream has been killed.

The sub-system should make sure breaks are inhibited:

(a) on a call of EUBSPACE or EURSPACE.

(b) between being entered at the get-off entry and jumping
to EUEXIT.

(c) when anything that is to survive the break is in an unstable
state.

6.4 When breaks must be allowed

A sub-system should allow breaks whenever possible,
in particular:

(a) whenever any input is requested.

(b) whenever EUSETDEV is called.

(c) at least once every tenth of a second of computing time.

6.5 Changing break status

Apart from the UTILIT routines that explicitly deal
with breaks (i.e. EUALBRK, EUINBRK, EUNOROOM and EUBREAK), no
UTILIT routines change the break status provided that none of
the rules given in the two previous Sections is broken.

7/1

Chapter 7 Documentation

All sub-systems must have manuals written for them.
There are certain conventions that must be observed in KOS
dnr-umentaFion: tlhose arc listed elsewhere.

In the description of a sub-system, the following
information must be qiven about its interface with KOS;

(a) The form of its entry command.

(b) A list of its supplementary commands.

(c) Its treatment of breaks; when they are allowed,
what they do.

(d) Its usage of user's workspace (state if none).

The writer of a manual should, whenever applicable,
use terms from the KOS User's Glossary (see Appendix to KOS
User's Manual). Synonyms for these terms must not be used.
Documentation for sub-system writers (e.g. specifications of
specialized utility programs) can and should make use of
terms in the KOS Sub-system Writer's Glossary (see Appendix F).
Writers of manuals for users must not, however, make use of
these terms without explaining them.

The program representing the sub-system itself must
be properly commented and documented. This is vitally important.

KNI4
	

8/1 	 KOS/AAA

Chapter 8 DebugAin,a
NA— 	 a •

Debugging common programs is relatively easy because they
tend to stop on an addressing fault when anything goes wrong; moreover,
all variables are LOCATEd and thus easy to find. The program PM (see
"How to run KOS") is invaluable for _diagnosing faults. Debugging runs
are normally best done in the batch with card input and printer output.
The UTILIT public values are often useful in interpreting dumps (e.g.
buffer pointers, etc., see Appendix A).

Before its dumps, PM produces some other diagnostic information.
Typically it may look like this.

1. LOGICAL ERRCP. IN COLLON MODE PROGRAZ BASIC

2. (MONITORED AT LOCATION 22571

3. THIS IS 53 RILTIVE TO START OM ECP)

4. BASE . 30720

5. FAILED AT LOCATION 19573

6. THIS IS 249 RELATIVE TO 	:IV:TRY POINT

The information in lines 1 and 5 is derived by subtracting
two from the s-value at the point of failure; occasionally this will give
unusual results. 	If s does not contain bit 17, line 1 reads

LOGICAL ERROR IN 31Z.VE MODE PROGRT

and line 6 is omitted.

Mien PM is dumping it prints several values to a line. 	If
all the numbers on a line are zero, it omits the line. 	*hen one or more
lines are omitted in this way, PM prints an asterisk. 	The storage area
for each KOS job stream is zeroized when the job stream a is created (on
a set-up or reset entry to KOSEX - see "How to Run KOS"). 	This is done
to reduce the size of post-mortem dumps.

If a logical error occurs during a KOS console session, a
post-mortem should, if possible, be taken before KOS is set going again; if not,
most of the information about the logical error will be lost.

KNLZf 	 8/2
	 KOS/AAA

Sometimes a logical error will occur in UTILI2 or a specialized
utility program. This is caused by the sub-system calling a routine with
illegal parameters or under illegal circumstances (e.g. an attempt to use
a device without borrowing it). UTILIT will often force a logical error
using EXEN IJOGERR in such circumstances.

It is planned to add on-line debugging aids to KOS in the future.

A special KOS command is available for testing new versions
of KOS programs at disc installations. This is the TRY command. TRY
is identical to the .TER command except that if the program for the sub-
system to be entered is not already loaded it is loaded from the PAD on
the KOS default disc rather than from the system. Hence if a new version
of a sub-system called DOALL was on the PAD it could be entered by

TRY DOALL

(An alternative method would be to load DOALL statically from the PAD (see
"How to run KOS") and then to use ENTER.)

Hence a good way to test a new sub-system is to write its
program to the PAD using NEATERD and then to check it out using TRY before
adding it to the system. Ordinary users should not be informed of the
existence of the TRY command.

ENL5
	 KOS/AAA

../2.22enai_2c A List of Lublip v..alues

The followine, is a list of the public values.
writers can make uso of these values but must be very wary
them, especially those not explicitly mentioned in the doe
The locations in which the values are stored are liable to

Sub-system
of changing

umentation.
change.

Me an

base, i.e. absolute
address of storage area

used to address COST area

used to address MCP area

status of data listing
option

data line number

results line number

first card column

last card column

points at next input
character

points at start of results
buffer

points at physical end of
results buffer

points at start of message
buffer

points at physical end of
message buffer

data device number

points at last character
in input buffer

See Section

2.4.

1.2

2.8

4.4.2

4.4.2

4.4.2

4.4.2

•••

4..4.

Location
	

Identifier

	

3
	

RUBASE*

	

4
	

RUBIT21*

	

5
	

LUKBIT21*

	

1 28
	

LUDLIST

	

129
	

RUDLINO

	

130
	

XURLINO

	

131
	

XUDCDST

	

132
	

XUNDEND

	

133 	RUIBITT

	

134. 	RURBFST

	

135
	

EURBFMAX

	

136
	

LUMUST

	

137 	£UMBFMAX

	

138 	LTUDDVD

	

144
	

RUIBFMAX

A/2 	 KOS/AAA

146 	£tJGDVB. 	command device number 	 4.5

154- 	ZURDVB 	results device number 	 4.5

156 	RURBFFT 	points beyond last character
in results buffer

162 	0311DVIII 	message device number 	 4.5

164 	,EUMBFIDT 	points beyond last character
in message buffer

171 	ZUTEM 	 -b. 	 U P1- 	(temporaries for TILIT. Can be
174 	EUTEMP5 	used by sub-systems between

(calls of UTILIT

185 	RUISIGST 	points at first significant 	4.4
character in input buffer

* ZUBIT21, gU1BIT21 and RJBASE contain specially adjusted values when KOS
runs under DES-2. Sub-system writers need not, however, be concerned with
this.

KNL4. 	 B/1
	

KOS/AAA

Appeniy. B List of UTILIT routines

Identifier Param-
eters

Res-
ults Exits

gUALBRK - - 1

OTINBRK - - 1

ZUSETDEV M - 2

RUDREND - - 1

RUDECODE R (M) many

ZUMSTR

reserved

R - 1

ZUMVAL M - 1

RUMCHAR M - 1

L'URCHAR M - 1

£UDLINE - - 2

RUCLINE

reserved

- - 1

RURLVAL M - 1

ZUMLVAL

reserved

M - 1

ZURVAL

Loc..
ation

50'

51
532

53

54
55

56

57

58

59

60

61

62

63

64

65

66

Meaning
------_
	See

Section

allow breaks 	6.1
'inhibit breaks 6.1

borrow D/R
devices 	3.2

return la/h
devices 	3.2
deo ode 	5
output string
to messages 	4.3.1

output number
to messages 	4.3.1
output character
to messages 	4.3.1
output character
to results 	4.3.1

get a line of
data 	 4.4.2
get a line of
command 	4.4.1

output line number
to results 	4.3.1

output line number
to messages 	4.3.1

output number
to results 	4.3.1

KNL/4.

at ion
Identifier

Param-
eters

B/2

Res-
ults

67 reserved

68 RUILCOM

69 reserved

70 RURSTR Oa

71 reserved

72 LUBSPACE

73 RURSPACE

74 reserved

75 reserved

76 reserved

77 RUIBCHAR

78 RUNOROOM

79 RUMCSTR R

80 RURCSTR R -

81 RUEXIT — —

82 reserved

83 LUDCHAR

84 RUNOPRG ISO -

85 RUCQLINE -

86 LUBREAK

87 reserved

88 LUDQLINE ,M

KOS/AAA

See
Section

1 	"ILLEGAL COI.Z, ',ND"
message
	 4.3.1

1 	output string to
results
	 4.3.1

2
	

borrow workspace 3.3
1 	return workspace
	3.3

3 	get input char-
acter from buffer 4.4.5

0 	no workspace
forced break
	

3.3.1
1 	clear, then

RUMSTR

1 	clear, then RURSTR 4.3.i
0 	exit from

sub-system 	2.6

2 	get input
character 	4.4.2

0 	no program exit
	

3.4
2 	command question- 4.4.3

and-answer

0 	force break 	6.1

2 	data question-
and answer

Exits Meaning

KNL5
	 C/1 	 KOS/AAA

Appendix C List of EXEN's and MCP fixed locations

The following table lists the EXENs that sub-systems may use,
and indicates whore they should be LOCATEd.

Looation 	Mnemonic 	MeaP-Ar4 	 See Section - ,

12736 	LLOGERR 	force logical error 	 2.5

12800 	LBORPRG 	borrow program 	 3.4

12864 	,-2RETPRG- 	return program 	 3.4

13184 	gSWEXEC 	switch to executive mode 	3.6

Note that if the above LO=Es are used EXENs should be written using the
"N:" feature of NEAT, e.g 	'

N:750ARETPRG

The following are fixed locations in MCP that are of use if the
executive mode facility described in Section 3.6 is used.

Location 	Mnemonic 	Meaninz -....

313 	RITOSLAV 	subroutine to return to slave mode

480 	RMB1T21 	analogous- to RUB1T21

481-485 	- 	 temporary variables for executive mode programs

Appendix D

D/1

List of decode table entries

1st word Mnemonic Description

N > 0 FIND Try to match next N characters.

-1 GETNUM Try to match number in aiven range.

-2 SYSDO Treat decodee as global KOS command.

-3 ERROR Treat decodee as an error.

-4 ALL Treat decodee as matched.

-5 GETCOM Call EUCLINE.

-6 CANLAST Something may follow decodee.

-7 NOTLAST Something must follow decodee.

-8 ISLAST Nothing can follow decodee.

-9 RESET As ALL but reset EUIBFPT.

E/0

Appendix E A sample sub-system

This Appendix illustrates a complete, albeit rather
trivial, KOS sub-system. Firstly a listing of the program,
in NEAT, is given and secondly a sample of its actual use at
a console is shown.

400;4;S/RPO1/TP=I (PFm01.

6ASSInN:5;Dr;?: -iic, T;

C;A:TFR
Ti ST K%L5A. P j 	 JAN 3 1971

N7:;fi

•;r..Tc:

NeTi-

N — T17
NT;7:

T'4 IC !S A VFY 	 POqi4to,A, 	34-inv
	

A K(S
ic

;-7!6NI 	70ti THE 	 CHAR4CTES

!T 	AN IT 01- PuT

IT 	 Ti4E 	 IC vIv,JS ,-)NE

NCTF

NRT CE:5 TkE flT AA

L :, T 4 IS STOD IN SL4VE W7'PbK5PAC.T.

NOTE I.E. EACH SLAVE HAS 	ITS OWN CORY

NOTE . 	DATA PART 	1: 	ENTRy 	POINTS 	TO UTILIT

DATA
LOCATE 50

EUAL60K 4. -) 50 	ALLOW PRFAKS
f!.1 ScT7HV 3 . 	52 	SET 	10 	DV ICES
itiM,JP 11 55 	OUTPUT 	A 	MESSAGE 	STRING
1.7;tpAt 4 66 	OUTPUT 	A 	NUmBER 	TO RESU:TS
iHR(- T77. 11 70 	OUTPUT 	A 	STRING 	TO RESULTS
iWz,.YIT 2 81 	EXIT 	PACK 	TO 	KOS

63 	GET A 	CHAR uF 	DATA

NOT
	

DATA PAT 2: VARILSIES 	PY st.f-S‘rsTrm.

	

.NoTE
	

LOCATIONS 300 10 499 A 	AVAILABLE FOR THESE

DATA,
LOCATf=
	

300
CC)0,JT 	 COUNT or INPUT CHARACTERS

0ATA PA7 3: PUPLI7. VALYE C0%TATN1N ;'.1T 21
Nr.rFF O ITS EQUIVALENT IN! THE DES-2

	

_NC, TF 	 ;.. P:VIRONNT

OAT

L2C:ITE
	

4

a

NOTE
NOTE
NOTE
NOTF

CCr:;ST

CONSTANT AREA
THERE IS ONLY ONE COPY OF THIS .
CnN3TANTS HAvr ABSOLUTE ADDRESSES AND MUST DE
ADD7;ESSED USIN LU21721

V0APRfli.; 	 124 	 CODE FOR UPARRoW

NOTE 	 MESSAGES;

PAT11S
CITIV1
C:
C:G-Am

C:11")

cITA

S7A - 1°,

E."Irm'z

NOTE.

CODE

NijF
NO“:
'ofrITC,

NijE
NOTF

jc

Jr

N34 COMFS THE CODE

P.PT 1: IrTIALIFATION
INITIALISATIO FOLL0:4S A SPAILAP PATTRN Fjp.

NEARLY ALL 5:0-4;YSTP..:5

THE 'IPT . TPRiL. INSTRHCTIONS AF ALWA'YT
-3

ENTRY PnIN7F rC KCS

4
AK

FTrY 1: MAIN ENTt4Y

ENTRY 2: i-RfAK ENTRY

C:JF PART 2: MAIN SECTIt'N OF CODE

CoT\J
ttIEW7H 1.,R
C.
oc'T
2

7 1v!!

HP

V:-1

COUT
1..P

(zf- T A% INPUT CHARAcTEP
ItVALID EIT, INPUT EXHAUSTED

TPST IF NEW(IN

TST jr
(TrJSSLICoNS JSF Or PIT 21 rc .

T,-4 F Cr1T APE A)
(SImILAdLY ,1 SE PIT 21 FOR ...

... V-1 ITER:LS)

JF 	 GETOFF 	ENTRY 5: GET-OFF ENTRY

JIL 	 fUALRRK 	ALLOW RREAKc-
ii,:i. 	 2 	 SET JP 10 DFVICES (PARAMETER ...
JIL 	 LosrTnEv 	... OF 2 MEANS ROTH DATA AND .. .
NOTE 	 RESULTS DEVICES NEETED)
JF 	 GETOFF 	INVALID EXIT
LER:L 	INITMS 	OUTPUT INTRODUCTORY MESSAGE
AL 	 fUMSTR 	(UMSTR AUTOYATICALLY ADDS BIT 21
NOTF 	 ... TO ITS PARAMETER)

NOTE

CIS
JIL

It'CS
cc'-. :L
J7
Llq

LP:"

ST
JH

L'O)

N()T

tr.

NOTE

LC

jIL
LDR:L
JIL

ACT70 VT ED OF LINE
Ot:ToT A LINE QF i=0: ... LINES SC, FAR

C.)(J!,!T Nr:_tel! 	r.-

fURVAL -
	

OUTPUT COUNT
SFARmS
fURSIP
	

OUTPUT REST OF MESSAGE
LCOD

NOTE PAriT 3: FINALISATION

C.1;7T'lic

PPEPK LL .E<1Tmq CLOSPJG MESSAGE

JP_ 	 LJMSTr--.
J1
	

EXIT I-IACK Tfl KOS

14F-Li.T7Vr Al..7., PFSEq OF SACS I MA!" .'7PAc'TER

1

14

(:)f t4A Lc:%1",4

O 74

O

*()
rPrsPC

1,!, R''P:G

KJEA

CC, 	!Inc '\CT

("O'ANA

UTIL1T

MOP
"hc, SEY, JP 	TPEAMS

"/// 1PK'oLr7 M 7 %) CONTRCL

S'rT UP

KO::;/AAA iCA,5

	

* *4 xns RAY - 	 KN'L5

***itT.7 TEc.T PJ V TH H41c,- 4

***'iMY Tcc7

it**cmN'IN:G PPrg- A.-1

iLIS1 ,L
12345

5 Ci-1.0; 	SO rAP

67q9

11 CHA4q f-=,0 F- 4r<

5.
9 CHARS S2 rAP
4.
4 CH.'4RS S-) rAP

i. JJJ*123

3 CHARS 	rAr?

6. 6

j 	51 rA7

Ait*E0 r1 F C2LrITTNr

***gKTLL;

1001 	KnS J2B ST, PE' EXECU TE"

zELET,-
SEFt 	1.'ELcTE9

SEND;

imE n n090

• • 	G

ICTL5
	

E/7 	 KOS/AAA

Uflarfo at a connolo

1;4IS Li 	/V '11.::;1')N1 A CINL.i)t,E
0,4p1; 	1FIKA II RAS ,04:V\1 UPDAP.A) I A 	IHE SYSIEm

04:11Fii IFS!'

**+(l)LNI1I\); 	 (VEUSI) J KVLIIA) 61AtifS
:123Ab6/8
9 CLIAliS S1 FAH

11 	CHAIi5 	SI 	FIR
:1,1 1)4Td7<1.Y\I
25 	S) 	Ei
sl

0 CI4A4'5 5) FAH

6 (1;44itS S) F41i
:3t 123
3 C44i6 Si FAH
IL

5
t•
C4165 5) FAH

***YU)14' CW1114;

F/1

Appendix F Sub-system writer's glossary

The glossary given below, which is supplementary to
that in the KOS User's Manual, has, like the latter, a dual
purpose.

Firstly it can be used as a dictionary. The reference
against each term indicates the Section in which it is first
defined or used.

Secondly it should be used by persons giving lectures,
writing manuals or even talking about KOS. Here it should be
used, together with the User's Manual glossary, to define a
standard terminology which must be adhered to whenever the context
is appropriate. Synonyms should not be used.

F/2

Terminology 	 Definition in Section

MCP (master control program) 	 1.1
Slave, slave mode 	 1.1
Common program 	 1.1
Base, range 	 1.1
Slave fixed locations 	 1.2
Sub-system fixed locations 	 1.2
Relative pointer, relative address 	 1.2
Absolute pointer, absolute address 	 1.2
Logical error 	 1.5

COMMAN 	 2.1
UTILIT, UTILIT routines 	 2.1
Specialized utility programs 	 2.2
Public values 	 2.3
Parameters) re UTILIT routines 	 2.4
Results) and EXENs
Exits
Return
EXEN 	 2.5
Initial entry 	 2.6
Break entry 	 2.6
Get-off entry 	 2.6

Extras
	 3.1

Borrowing and returning extras
	

3.1

KOS 7-bit code 	 4.2
Newline (character) 	 4.2
Character 	 4.2
Packed 6-bit code 	 4.3.1
End marker 	 4.3.1
String 	 4.3.1
Clearing a buffer 	 4.3.1
KOS device number 	 4.5

Decodee 	 5
Decode table 	 5
Return offset 	 5
Match (of decodee with decode table entry) 	 5

Allow breaks 	 6.1
Inhibit breaks 	 6.1

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56

