! The EDWIN BOX and WIRE routines for CIF drawing !%record %format POINTFM (%integer X, Y) %record %format LINEFM (%long %real A, B, C) ! IMP Maths routines !%include "inc:maths.imp" ! Routines from EDWIN !%include "edwin:specs.inc" !%include "edwin:shapes.inc" !%const %integer TRUE = 0, FALSE = 1 %own %integer WIRE MODE = EXTENDED ENDS %external %routine SET WIRE MODE %alias "EDWIN_SET_WIRE_MODE" (%integer MODE) %if FLAT ENDS <= MODE <= ROUND ENDS %start WIRE MODE = MODE %else WIRE MODE = EXTENDED ENDS %finish %end %external %routine BOX %alias "EDWIN_BOX" (%integer L, W, %record (POINTFM) %name C, D) ! This routines draws a box of length L, width W at centre C with direction D. %integer I %record (POINTFM) PL, PU %record (POINTFM) %array PTS (1:4) %long %real THETA, LC, WC, LS, WS %if D_X=0 %or D_Y=0 %start %if D_Y#0 %start I = L; L = W; W = I %finish RECTANGLE (C_X - L//2, C_Y - W//2, C_X + L//2, C_Y + W//2) %else THETA = ARCTAN (D_X, D_Y) LC = L * COS (THETA) WC = W * COS (THETA) LS = L * SIN (THETA) WS = W * SIN (THETA) PTS(1)_X = C_X - int((LC + WS)/2) PTS(1)_Y = C_Y + int((WC - LS)/2) PTS(2)_X = C_X + int((LC - WS)/2) PTS(2)_Y = C_Y + int((WC + LS)/2) PTS(3)_X = C_X + int((LC + WS)/2) PTS(3)_Y = C_Y - int((WC - LS)/2) PTS(4)_X = C_X - int((LC - WS)/2) PTS(4)_Y = C_Y - int((WC + LS)/2) POLYGON (4, PTS) %finish %end %external %routine WIRE %alias "EDWIN_WIRE" (%integer W, N, %record (POINTFM) %array %name P) ! This routine converts a wire to a POLYGON. ! wire width is given by W, and the wire has N points specifying it, ! whose coordinates are given in P. ! Algorithm is based on the SIMULA one in CIF20P. %integer I, NUM IN, NUM OUT %long %real HWIDTH %record (POINTFM) %array IN (1:N) %record (POINTFM) %array OUT (1:2*N+2) %record (LINEFM) LNEW, LLAST, LBEGIN, LEND, MLLAST, MLNEW, LBEGINP, LENDP %routine BREAK UP WIRE (%integer W, N, %record (POINTFM) %array %name P) ! Break up the wire into some boxes, with circles over the points. %record (POINTFM) P1, P2, D, C %integer I, L %long %real X, Y %routine SWAP (%record (POINTFM) %name A, B) %record (POINTFM) C C = A; A = B; B = C; %end %for I=1,1,N-1 %cycle P1 = P(I) P2 = P(I+1) ! Orthogonal boxes? %if P1_X = P2_X %start SWAP (P1, P2) %if P1_Y > P2_Y RECTANGLE (P1_X-W//2, P1_Y, P1_X + W//2, P2_Y) %continue %finish %if P1_Y = P2_Y %start SWAP (P1, P2) %if P1_X > P2_X RECTANGLE (P1_X, P1_Y-W//2, P2_X, P1_Y+W//2) %continue %finish ! Arbitary Box X = P2_X - P1_X Y = P2_Y - P1_Y L = INT ( SQRT ( X*X + Y*Y)) C_X = P1_X + INT(X/2) C_Y = P1_Y + INT(Y/2) D_X = - INT(X) D_Y = INT(Y) BOX (W, L, C, D) %repeat MOVE ABS (P(I)_X, P(I)_Y) %and CIRCLE (W//2) %for I=N, -1, 1 %end %integer %fn EQ (%long %real A, B) %result = TRUE %if A - 0.05 < B < A + 0.05 %result = FALSE %end %routine NORMALISE (%record (LINEFM) %name LINE) ! This normalises the line equation on the creation of a new line. %long %real D D = SQRT (LINE_A\2 + LINE_B\2) %return %if EQ(D,0)=TRUE LINE_A = LINE_A/D LINE_B = LINE_B/D LINE_C = LINE_C/D %end %routine MAKE LINE (%record (POINTFM) %name P1, P2, %record (LINEFM) %name LINE) ! given the points P1 & P2 compute the line equation in a b c form. LINE_A = P2_Y - P1_Y LINE_B = - ( P2_X - P1_X) LINE_C = - LINE_A*P1_X - LINE_B*P1_Y %if EQ(LINE_A,0)=TRUE %and EQ(LINE_B,0)=TRUE %and EQ(LINE_C,0)=TRUE %start LINE_B = -1 LINE_C = P1_Y %finish NORMALISE (LINE) %end %routine INFLATE (%record (LINEFM) %name LINE, NLINE, %long %real W) ! Inflate LINE by width W NLINE = LINE NLINE_C = NLINE_C + W NORMALISE (NLINE) %end %integer %fn INTERSECT (%record(LINEFM) %name L1, L2, %record (POINTFM) %name P) ! TRUE if lines intersect, and P gets the intersection point. ! otherwise FALSE. %long %real D %long %real TX, TY D = L1_A*L2_B - L2_A*L1_B %result = FALSE %if EQ(D,0)=TRUE TX = (L1_B*L2_C - L2_B*L1_C)/D TY = (L2_A*L1_C - L1_A*L2_C)/D P_X = int(TX) P_Y = int(TY) %result = TRUE %end %routine PERP THROUGH (%record (LINEFM) %name LINE, NLINE, %record (POINTFM) P) ! Forms the perpendicular of LINE, passing through point P. %record (LINEFM) TLINE TLINE = LINE TLINE_A = LINE_B TLINE_B = - LINE_A TLINE_C = -TLINE_A*P_X - TLINE_B*P_Y NORMALISE (TLINE) NLINE = TLINE %end %return %if N = 0 %if W=0 %start; ! This is a POLY-LINE MOVE ABS (P(1)_X, P(1)_Y) LINE ABS (P(I)_X, P(I)_Y) %for I = 2, 1, N %return %finish MOVE ABS (P(1)_X, P(1)_Y) %and CIRCLE (W//2) %and %return %if N = 1 BREAK UP WIRE (W, N, P) %and %return %if WIRE MODE = ROUND ENDS HWIDTH = W/2 NUM IN = 2 NUM OUT = 2 MAKE LINE (P(1), P(2), LBEGIN) LNEW = LBEGIN %for I=2,1,N-1 %cycle LLAST = LNEW MAKE LINE (P(I), P(I+1), LNEW) INFLATE (LLAST, MLLAST, H WIDTH) INFLATE (LNEW, MLNEW, HWIDTH) NUM OUT = NUM OUT + 1 %if INTERSECT (MLLAST, MLNEW, OUT(NUM OUT)) = TRUE INFLATE (LLAST, MLLAST, - HWIDTH) INFLATE (LNEW, MLNEW, - HWIDTH) NUM IN = NUM IN + 1 %if INTERSECT (MLLAST, MLNEW, IN(NUM IN)) = TRUE %repeat LEND = LNEW PERP THROUGH (LBEGIN, LBEGINP, P(1)) INFLATE (LBEGINP, LBEGINP, - HWIDTH) %if WIRE MODE # FLAT ENDS PERP THROUGH (LEND, LENDP, P(N)) INFLATE (LENDP, LENDP, HWIDTH) %if WIRE MODE # FLAT ENDS ! Compute end intersections. INFLATE (LBEGIN, MLNEW, HWIDTH) %signal 14,7 %unless INTERSECT (LBEGIN P, MLNEW, OUT (1)) = TRUE INFLATE (LBEGIN, MLNEW, - HWIDTH) %signal 14,7 %unless INTERSECT (LBEGIN P, MLNEW, IN (1)) = TRUE INFLATE (LEND, MLNEW, HWIDTH) %signal 14,7 %unless INTERSECT (LEND P, MLNEW, OUT (NUM OUT)) = TRUE INFLATE (LEND, MLNEW, - HWIDTH) %signal 14,7 %unless INTERSECT (LEND P, MLNEW, IN (NUM IN)) = TRUE ! make a set of ordered points from IN & OUT lists. N = NUM OUT N = N + 1 %and OUT(N) = IN(I) %for I=NUM IN, -1, 1 POLYGON (N, OUT) %end %end %of %file