---===<<< Fractal Data File >>>===--- This file contains the data to produce a variety of fractal pictures. Each data set is indicated by a hash character, followed by a 'key number', which indicates which data set is read. Everything before the hash (comment) is ignored. When running the fractal program, the key number is requested. Following the key number, the data is presented in the following way: TYPE 1 or 2 at present, indicates the type of fractal to generate INFINITY The value beyond which points are attracted to infinity. This is the square of the complex circle of radius 2 MAX COLOUR Sets an upper bound on the number of iterations. The actual values placed in the output file are bytes, so they are printed Modulo 255 if they are greater than 255. XorPMIN XorPMAX Depending on the TYPE, represents the min and max X or P values over which the function is calculated YorQMIN YorQMAX Depending on the TYPE, represents the min and max Y or Q values over which the function is calculated P Q For fractals of TYPE 1, this is the complex constant C = P + iQ ---===<<< ************************************************************ >>>===--- This is a part of the Mandelbrot Set (jhb) Map 29 #19 2 4 255 -1.781 -1.764 0 0.013 ---===<<< ************************************************************ >>>===--- Another of the same Map 34 #20 2 4 255 -0.74758 -0.74624 0.10671 0.10779 ---===<<< ************************************************************ >>>===--- This is a self similar dragon fractal of the type: 2 Z -> Z + C Map 18 (B::Pr_2:Pic1) The key number for this data set is 1 (next line, after the hash) #1 1 4 255 -1.5 1.5 -1.5 1.5 0.32 0.043 ---===<<< ************************************************************ >>>===--- ! ! This is a fractal - the Mandelbrot Set ! ! Map 22 (B::Pr_2:Pic2) ! #2 2 4 255 -2.25 0.75 -1.5 1.5 ---===<<< ************************************************************ >>>===--- ! ! This is a fractal - the Mandelbrot Set. ! ! The part of the function displayed is a very ! small part of the entire function, near the ! iterated border of the set. ! ! Map 23 (B::Pr_2:Pic3) #3 2 4 511 -0.19920 -0.12954 1.01480 1.06707 ---===<<< ************************************************************ >>>===--- ! ! This is a fractal - the Mandelbrot Set. ! ! The part of the function displayed is a very ! small part of the entire function, near the ! iterated border of the set. ! ! Map 32 (B::Pr_2:Pic4) #4 2 4 511 -0.75104 -0.7408 0.10511 0.11536 ---===<<< ************************************************************ >>>===--- ! ! This is a fractal - the Mandelbrot Set. ! ! The part of the function displayed is a very ! small part of the entire function, near the ! iterated border of the set. ! ! Map 36 (B::Pr_2:Pic5) ! #5 2 4 511 -0.74591 -0.74448 0.11196 0.11339 ---===<<< ************************************************************ >>>===--- ! ! This is a fractal - the Mandelbrot Set. ! ! The part of the function displayed is a very ! small part of the entire function, near the ! iterated border of the set. ! ! Map 38 (B::Pr_2:Pic6) ! #6 2 4 511 -0.745538 -0.745054 0.112816 0.113301 ---===<<< ************************************************************ >>>===--- ! ! ! This is a fractal - the Mandelbrot Set. ! ! The part of the function displayed is a very ! small part of the entire function, near the ! iterated border of the set. ! ! Map 39 (B::Pr_2:Pic7) ! #7 2 4 511 -0.745468 -0.745385 0.112979 0.113039 ---===<<< ************************************************************ >>>===--- ! ! This is a fractal - the Mandelbrot Set. ! ! The part of the function displayed is a very ! small part of the entire function, near the ! iterated border of the set. ! ! Map 42 (B::Pr_2:Pic8) ! #8 2 4 511 -0.7454356 -0.7454215 0.1130037 0.1130139 ---===<<< ************************************************************ >>>===--- ! ! ! This is a fractal - the Mandelbrot Set. ! ! The part of the function displayed is a very ! small part of the entire function, near the ! iterated border of the set. ! ! Map 43 (B::Pr_2:Pic9) #9 2 4 1023 -0.7454301 -0.7454289 0.1130076 0.1130085 ---===<<< ************************************************************ >>>===--- ! ! ! This is a self similar dragon fractal ! of the type: ! 2 ! Z -> Z + Z + C ! ! (B::Pr_2:Pic10) ! I've lost the data set for this one 10 1 4 255 ? ? ? ? ? ? ---===<<< ************************************************************ >>>===--- ! ! ! This is a self similar dragon fractal ! of the type: ! 2 ! Z -> Z + C ! ! Fig 19 (B::Pr_2:Pic11) ! #11 1 4 255 -1.3 1.3 -1.3 1.3 0.27334 0.00742 ---===<<< ************************************************************ >>>===--- ! ! ! This is a Fatou Dust Fractal (Hausdorf dimension between 0 and 1) ! of the type: ! 2 ! Z -> Z + C ! ! where C (complex) lies outside the Mandelbrot set (whatever that means) ! ! Fig 22 (B::Pr_2:Pic13) ! #13 1 4 255 -1.5 1.5 -1.5 1.5 0.11031 -0.67037 ---===<<< ************************************************************ >>>===--- ! ! ! This is a Fatou Dust Fractal (Hausdorf dimension between 0 and 1) ! of the type: ! 2 ! Z -> Z + C ! ! where C (complex) lies outside the Mandelbrot set (whatever that means) ! ! Fig 24 (B::Pr_2:Pic14) ! #14 1 4 255 -1.5 1.5 -1.5 1.5 -0.194 -0.6557 ---===<<< ************************************************************ >>>===--- ! ! ! This is a self similar dragon fractal ! of the type: ! 2 ! Z -> Z + C ! ! A detail of Map 18 (B::Pr_2:Pic15) #15 1 4 255 0.0468750 0.6035156 0.6328125 1.1425782 0.32 0.043 ---===<<< ************************************************************ >>>===--- #16 1 4 511 0.4571359 0.5158869 0.8279570 0.8916777 0.3200000 0.0430000 ---===<<< ************************************************************ >>>===--- #17 1 4 511 0.4113301 0.4551444 0.8717650 0.9185598 0.3200000 0.0430000