


HOW TO WORK THE

* LOGO MACHINE:
'a.friﬁér*for-ELOGOQ*

" by

Benedict du-BOHIay—and.Tim_O‘Shé&f

D.A.I. Occasional Paper

No. 4

*To be used in conjunction with D.A.I. Occasional Paper No. 5

"Teaching Children LOGO: a metaptimer for ELOGO?

(E) du Boulay and 0'Shea % : November 1976

All rights reserved







»

10.
11.
12,

13,

14,
15,
16,
17.
18.
19.
20.
21.
22,
23.
24,
25.
26.
.27,
28.
29.
30,
31,
32.
33.

W0 s O B W N
e« + & e 8 o -

CONTENTS

PREFACE
ACKNOWLEDGEMENTS
INTRODUCTION

USING THE DRAWING DEVICES
TYPING TO LOGO

YOUR OWN PROCEDURES

TIDY LOGO
CORRECTING MISTAKES IN YOUR PROCEDURES
TWO MEMORIES (Part 1)

PROBLEM BUG

YOUR OWN "POCKET" CALCULATOR
CALCULATING RESULTS
SUPER-PROCEDURES and SUB~PROCEDURES
BREAKING DOWN PROBLEMS
PROCEDURES WITH INPUTS (Part 1)
PROCEDURES -WITH INPUTS (Part 2)
CHANGING PROCEDURES (Part 2)
TWO MEMORIES (Part 2)
PROCEDURES WITH INPUTS (Part 3)
POLYGONS

PROCEDURES WITH RESULTS
RECURSTON

SPIRALS

TRUE or FALSE
. CONTROL PROCEDURES

QUIZZES
STOPPING PROCEDURES
TRACING PROCEDURES
HOW . LISTS WORK

FINDING THINGS IN LISTS

COMING BACK OUT OF RECURSION
WORKING ON LISTS
CONSTRUCTING LISTS

VARTABLES

USING PUBLIC BOXES

Page

13
17
24
26
29
33
34
37
41
46
51
55
56
58
61
66
70
73
78

81
84
86
90
93
96
99
103
106

- 11t

115






2 2 MR o H 6o M E S oo

APPENDICES

PRINTING
MORE ABOUT DRAWING CIRCLES
'THE TURTLE STATE

THE LOGO CLOCK

PAPER TAPE

AN ABBREVIATION FOR VALUE

MORE ABOUT DEFINING PROCEDURES
GLUEING THINGS TOGETHER

BOTH and EITHER

THE END OF THE LIST

WHILE '

AND

GO

RUN

Index of procedure names (alphabetic)
Index of procedure types’ o
Index of markers and prompts

Errata

Page

118
120
“121
124
125
127
128
129
131
133
135
137
138
139

140

143
144
145



o




PREFACE

This LOGO primer consists of

{a) An ordered set of 33 worksheets designed te introduce the

basic concéptslofrthe Edinburgh implementation of LOGO.

(b} An unordered set of 14 appendices designed to introduce
various additional LOGO facilities which a student may
need to complete a project. These are much terser

than the worksheets.

-(c) A glossary of LOGO primitives.

The primer has been written for use by two specific groups of people
working in our LOGO Laboratory. It is designed for a very particular
implementation of LOGO* which has particular syntax, error messages,

devices and filing system.

These notes have been used by eleven to thirteen year old boys and by
trainee and serving school teachers. They have alsc been used by the
Edinburgh'undergrgduate Artificial Intelligence course -and by visitors

to the Department.

The way in which the primer is intended to be used in teaching is

described in a companion paper™ .. This paper alsc lists deficiencies,

problems and possible improvements to the primer.

We would be most grateful to receive any eritical comments on rhe

content, organisation or style of the primer.

"Design Considerations for ELOGO’ by McArthur, du Boulay, G'Shea
. and Howe.
Kk ' .
'Teaching Children LOGO: a Metaprimer for ELOG(C' by 0'Shea and
du Boulay, -






ACKNOWLEDGEMENTS

The content and organisation of this primer owe a great deal

to the work, comments and help of Ricky Emanuel, Colin McArthur
and Richard Young. We are indebted to Jim Howe for his support
and encouragement in the writing of the primer. We thank

Jean Parker and Margaret Pithie for their patient hard work in
producing this document and Doreen du Boulay for sustaining ocur
efforts,

Many boys and teachers gave enormous help through their work

with and comments on earlier versions of these notes.

The work is funded by a Social Science Research Grant No.
HR 2981/1. Benedict du Boulay receives a Social Science

Research Council Studentship.




| SO—

[




INTRODUCTION

These notes are to help you learn and use L0GO.  LOGO is a language
which the computerrunderStands& " These notes assume you have no
‘previous knowledge of computers. Each one explains some new ideas in
LOGO., The names of these ideas will be written in capitals and under-
lined as they are introduced. Some of the words in the notes are
words which are part of L0GO. These will be written in‘capitals but

not underlined.

Each of these notes describ&s things you ecan do with the computer.
... Some of these may give you ideas for your cwn projects. Always

explore any ideas, especially if you are not sure that they will work.

[







9
i. THE BUTTON BOX

The button box is a device which is- used to send messageb 0o Lhe compuner.

,The button box. can be used to control either the turtle or the music-box

via the computer.

A, Controlling the turtle

The computer can drive tha turtle FORWARD, BACKNARD: LEFT or RIGHT
It can- also make it HOOT When the turtle moves it leaves & llne on the

floor by means of a pen fixed at its centre@

Pressing a button is COMMAND which the computer will EXECUTE and you will
sée the EFFECT. When all the lights are off the compiiter is WAITING for

a command from you,

BUITON BOX J\Eb |
WORKING TORTLYE
MEMORY

L YOUR

BUTTON EBOX

) 0 RORKING = HMUSIC BOX
MEMORY
COMPUTER

EXERCISE 1: Press every button except those labelled DEFINE,

END and RUN.

Forwarp| [Fomwaed | [Forwagy

j 5 || ie HOOT
Saccwarp| |Baacwarp| l2accemey DEF NE

i g 1o !

i e
Gk gt RIGHT ~

5 _ ' , 15 90 tN‘D
LEPT werr | et

5 iS5 G6 | R‘}M




o

To uﬁdersﬁ;némhow Eﬁe tﬁrtle Wili be affectgd by commands,'imagine yourself
in the positicn of the turtle. If you wers told FORWARD 5 you would walk
5 paces forward in whatever direction you hdppened to be fac1ng If you
were told RIGHT 15 you would rotate on the spot towards the rlght through
‘15 degrees.

If you had paint on your”feet you would see ‘the effect on the floor of a

sequence of such commands!

The important things about the turtle are where it is, its POSITION and
which way it is faéing, its HEADING.  The POSITION and HEADING together
are called the TURTLE STATE.  FORWARD and BACKWARD commands change, only
the position part of the turtle state, LEFT and RIGHT'changé only the

heading part of the state.

EXERCISE 2: Find ocut what sequence of commands will make the

turtle Tace the opposite direction.
How many degrees are there in cne complete turn?

Use the turtle to draw a triangle with equal size

angles and equal length sides.

The computer has a WORKING MEMORY. It is divided into two parts, one for

the button box and one for you. In the button box part of working memory

-are s stored instructions of what EFFECT on the turtle each command should have.

You can use your part of the working memory to STORE A SEQUENCE OF COMMANDS;

for example, a sequence to draw a triangle.  Such a sequence of commands is
called a PROCEDURE. Storing a procedure in working memory is called DEFINING
A PROCEDURE.

" To define_a procedure press, the DEFINE BUTTON.
EXERCISE 3: Press it.

This sets the computer in a special STATE, calied the DEFINING STATE. When

the computer is in this state the light in the define button stays on. Each
‘command button tﬁat is pressed is added into your part of the Working memcry
as tﬁe next command in your procedure. You can continue to add commands
until your procedure is éomplete@ While you are daflﬂlng your procedure,

the commands you give will NOT be executed, they w111 be stored away.




EXERCiSE 43 Press command buttons to make a procedure-
EXERCISE 5: When you have finished your procedure press the END BUTTON.

This tells the computer that you have finished defining your procedure. The

computer returns to the WAITING STATE when it is waiting to execute any

command immediately. The light in the define button goes out.

Now that you have stored a procedure in working memetry you can command the
computer to execute the whole sequence of commands which make up your procedire.

The computer reads this sequence from your ﬁart of the working mémoryg This

is called RUNNING A _PROCEDURE. You can run your procedure by pressing the

RUN BUTTON.

EXERCISE 6: Run .your procedure.

While the computer is executing your procedure it is in EXECUTING STATE and

will ignore new commands. As the computer executes each command in your
procedure the appropriate button will 1light up.
If you want to run your procedure again, just press the run button again,
when the computer is waiting.
EXERCISE 7: Run your procedure a few more times.
If you want to define another procedure just press the store button again.
The old procedure will be forgotten and the computer will be put in the
defining state to store away your new procedure.
EXERCISE 8: Define a procedure to draw a hexagon (6 sided Figure)
with equal sides and equal angles., Hint: it takes
360 degrees for the turtle to turn right round once.

Define a procedufe to draw an octagon (8 sided figure).

Define a procedure to draw a diamond.

Define some cther procedures for your own pictures.



- B. Controllisg the music-box

In the button box paft of working memory there are also instructions for

working the music-box.

ﬂ AS B |jecme
»lellr “g

‘ 20 | . i 2 ' %w
r & G FW | LOWER, GcTavE HIGHER GoirveE

Buttons marked A, A ; .....,6, G play the notes of a single cctave.

EXERCISE 9: Play all the notes in the octave.

if_you want notés from an'octave higher, press the QCTAVE BUTTON and

then the note you want., Notes will continue to be in the higher cetave
until you press the octave button again (like a ballpen, one press. for up,

another press for down).
,EXERCiSE i0: Play the.ﬁighef_octave@
Play both octaves.
Piay a.tuﬁem_
The define, end and run.buttons do the same job as beforee
EXERCISE 11% Define a procedure to play Frére Jacques, this is how it
- starts: '

¢,0,E,C,C,D,E,C,E,F,G,E,F,C

Can you finish it off?




SUMMARY

The computer can be in one of three states: WAITING: DEFINING, EXECUTING,

VJAITIN&-
STATE

NG LI6#TS o

EXECUTING - DEFIMING A

| ,ST&TEr S , ‘sans

ﬁ CUMM”}ND LT QN ) : ’ bEF#N‘E LHG’HT ond
The arrows .show you how to change the state of *h@ computer. The boxes

" represent. the three states.

The TURTLE STATE is dits p031tion and heading.

When the turtle goes FORWARD it moves in whatever direction it happens to
be facing (POSITION changes). When the turtle turns LEFT or RIGHT it
‘rotates on tﬁe spot (HEADING changes)., When the turtle turns right round
it turns.tﬁrougﬁ 360 degrees. - '







"2. USING THE DRAWING DEVICES.

DOT oD Do 000
oLEERA 5O OOOOI\' LOGO

\ : ) - o FIRST USER
’ ’ PLOTT“RA
P [ 'y
cﬁ§23;%c> ,cﬁﬁéiﬁfh, SECOND USER : :

THIRD USER

FELETYPES
FOURTH USER _
LT e COMPUTER PLOTTERE  TURTLE
oo™ o T HORKING MEMORY 'D’RAme-DEVICES'

v

The working memory of the computer is d1v1ded into five sectmons, ne

L

for LOGB and one for eaﬁh user.
A.'Starting

When LOGO typeé
_ WO ARE YOU: , .
then,type your full name and then press the GREEN COMMAND BU?TOV

You will then be glven a seéction of the working Memory . LOGO will
- then. type a PROMPT -
:,M:

whlch Jneans it is in the WAITING STATE and is waiting for your next
COMMAND " L0GO's job is to execute your COMMANDS one at a tims.
Fach command will have an EFFECT. ) '

B. Choosing a drawing device

Just as you used the button box for drawiﬁg so you can use LOGO.
*But nﬁﬁ you have a choice of four drawing devices, two PLOTTERS, the

DISPLAY «r the FLOOR TURTLE. ' - !

You must tell t0GO wﬁich drawing dévice you wguld like your teietype
to be connected to. ihere are PROCEDURES to connect you to the
devices. .

The NAMES of the procedures are: '




CTURRLE
~ PLOTYERA

you must type the name of one of theSe proeadures and press't
cammand button$ ThlS Button teils LGGQ that yau have flﬁlﬁh
T a comm@nd and that thls commaad must be executed at @ncew : ﬂ

fEXERﬁIBﬁ.i$ ' Connect yourself to a drawzng devicea.'

if! you are u51ng the floor tuftla, put 1t in the mlddle oL 1ts boardn
The dlsplay ‘has an 1mag1nary turtle whlch draﬁs on itg. screen.M ' e
The plotters use the;r pens as’ turnies. : These 1mag1nary turtles

always start 1n the mldéle of thelr draW$ng_area,

The four procedures fer connectlng to. the draw1ng dev1cas are storeé

in LUGO s sectxon of the workxng memﬂry,

When tOGO reads the name uf a procedure yeu have typeﬂ it 100&5 it
up 1n the workxng memory to flnd out what shauld bs &one, and then

executas the sequence of 1nstruct10ns assoc1ate& w1th that name

: If ynu type the Hame of a procedure whic ch- LGGO cannet fzn& in 1&3
wcrking memary, LOGO types an’ approprlate MESSAGE« '
EXERCISE 2:% Try t&ﬁ-i_ng-
W: CLOTTERA

. Drawi ing
The names of the procedures for draW1ng were the 1abels used on- tﬁe ,
buttoﬂ bax:- o - C -
o Fém«maa
" BACKWARD
LEFT
RIGHT

Each procedure is 1ikeﬂg WORKER who knows how to do & parﬁicuiéf .




g

:jjob and will execute that iob when commanded £o by having ﬁis,name
called. Some of these #orkérs nead info:mation to be able to do

theit+ jobs. = ‘ _ P
EXﬁRCISE‘3:' Type FORWARD and press the green command button.

1t 1s no go&d just commanding FORWARR without telling this worker
 how far to move forward. Giving this information is called giving

an INPUT..

- INPUT

We;give an input by typing the name of the procedure and then a
spape aud then a number. The number is the number of steps to go

forward, in whatever direction the turtle is facing.

" EXERCISE 4: Try typing
c W: FORWARD 125
W: BACKWARD 16

When LOGO reads the name of the procedure FORWARD it iooks it up in
its working memory and finds that this worker needs an input.,  LOGO
‘Hontinues reading your command from left to right looking for the
input. -

" The space between the procedure name and the input is important.

S ¥t tells LOGO where the procedure name stops and the input starts.

EXERCISE 5: Try typing
Wi FORWARDY

The message from LOGO tells you that it could find no procedure

called FORWARD? in its working memory. LOGO could not execute your



A

]:0 7 - - _'J-‘f;-_:.,-g; :

‘;',?L

command is now WAITING for;another command,

- The turtle may be rotated ON THE SPOT ‘towards the LEFT or RIGHT

The two procedures each: need an 1nput to tell them how much to rotate.

EXERCISE 6: Try typing, = L
W: RIGHT 62
W: LEFT 33

If you are connected to a plotter, watch its_CUMPASS!

Try driving the turtle to draw a

square for example.

LOGO expects only one command atla3time.. 1f you give more than one
command before pressing the green command button, only the first command

on the line will be executed and the rest ignored.

EXERCISE 7: Try typing 4
‘ W: FORWARD 24 LEFT 50 BACKWARD 256
W: 256 '

LOGO expects a command and does net know what to da.-wit-h the nunker 256,

There is a procedure for puttlng the turtle back in the centre of its

drawing area. The name of the procedure is:
CEMTRE

The turtle will be moved to the centre with its PEN up 8o that no
line is drawn. The turtle will be left facing toward& the right, with

its pen down agaln@

EXERCISE g: Trying running CENTRE.
Try to draw a triangle with equal sides

Try to draw a hexagon wiith six equal sides.

You can also move the turtle without drawing a line if you first raise
its pen. There are precedures to raise amd lower the turtle's pen.
Once the pen is raised, no more llnes willl be drawn untll you lower it.

The names of the procedures are:—

LIFT
DROP




11

Thé pens on the plotters are held a little off the paper except
when they are actually moving to stop ink splodges. The effect of

running LIFT is to keep the pen off the paper even when it is moving.

EXERCISE §: Draw some separated shapes.

Y

Sometimes you may leose track of exactly what the TURTLE STATE is.

There is a procedure‘wﬁich will draw you the turtle, which you can
‘use when you are connected to the DISPLAY or the PLOTTERS. The name

of this procedure iss

WHERE

There are two cther special proéaduweg, Cne for cleidring the
display screen and one for making the floor turtle HOOT. The names

of these procedures arer

CLEAR -
HOOT

EXERCISE 10: 1If you are connected to the display,
try running WHERE then moving the
turtle FORWARD and run WHERE again.
Run CLEAR.

D, Changing your‘drawiggfdeviée

There is a procedure to discomnect you from your drawing device.
Its name is:
FREE
EXERCISE 11: Swop drawing devide with someone, but

stay sitting at the same teletype.




g
] ﬁﬂ

12

E. Finishing the LOGO session

There is a procedure which empties your section of the working memory
ready for a new user. The procedure also disconmects you from any

drawing device. The name of the procedure is:

GOODBYE

[PEpE—

SUMMARY

When LOGO types the PROMPT W: it is in the WAITING STATE, waiting

to EXECUTE a single COMMAND. You give a commaﬁd'by typing the NAME
of a PROCEDURE, with an INPUT if needed, and then press the GREEN
COMMAND BUTTON.

Here is a table of mew L0OGO procedures.

NAME OF PROCEDURE INPUT ' EFFECT OF PROCEDURE

DISPLAY : no input comnects teletype to display g
TURTLE ne input connects teletype to floor turtle %
PLOTTERA no input connécts teletype to plotter a

PLOTTERB no. input connects teletype to plotter b

FORWARD one unumber moves. forward :

BACKWARD one number 7 mbves backward

LEFT - one number " rotates leftwards

RIGHT one number rotates'rightwards

LIFT : no input raises pen

DROP . - mo input lowers pen

CENTRE ne input . . turtle to centre, facing right

CLEAR noc input o clears display screen

HOOT _ no input floor fﬁrtle hoots

WHERE : no inéut draws turtle on display or plotters

FREE no input discénnedfs-drawiﬁg device

GOQDBYE ' no input empties working memory.




13

3. TYPING TO LOGO

This note describes how to use the teletype and how to correct typing

mistakes.
LOGO reads a difference between 1 (number) and 1 {letter). LOGO also

reads a difference between O (number) and 0 (letter).

There is a shift key, or button, as on a normal typewriter. This is

used when there are two characters printed on one button, e.g.

If you do not touch the shift key and press you will type the
Lower character 2. Holding the shift key down and pressing

will type the upper character " .

A. Correcting typing mistakes

If you make a typing mistake you can make it invisible to LOGO, but not

rub it off the paper. If the last character you typed was wreng jusc

\
press

This will make that last character invisible to LOGO which will type you +

EXERCISE 1: Connect to a drawing device and type
W: FORWAD+RD 123

* ¢ If the mistake was not the last character typed, you must press
sufficient number of times to make all the characters back to the

mistake invisible to LOGO and then continue on again from the mistake
For example: W: GOOFBYE<<++DBYE

If your mistake is right at the beginning of a long line it may be easier

to tell LOGO to ignore the whole line and start again. Hold



14

the ) button down and press X,L0GO will type T and the whole line
will be ignored. LOGO will give you a new prompt,

EXERCISE 2: Try typing
W: RACKWARD 5567
W:

B. PRINTING

There is a procedure named PRINT which needs one INPUT. PRINT has
the EFFECT of making the teletype type the input you give it.

EXERCISE 3: Try typing
' W: PRINT 79

Find the largest number you can command to be printed.
PRINT can aliso have a WORD as its input. 4
EXERCISE 4: Try typing
Wi PRINT CAT

The reason LOGO sent you a MESSAGE and did not type CAT was because
LOGO looked for a PROCEDURE named CAT in its working memory and could

not find one there.

To mark the difference between the NAME OF A PROCEDURE TO BE EXECUTED
and a WORD TO BE USED AS INPUT. we use a special character ". This

we will call the quote‘sign° When LOGO reads this it assumes that
the word immediately following is to be used as an input and is not te

be executed.

" EXERCISE 5: Try the following
W: PRINT "CAT
W: PRINT "RHUBARB
W: PRINT "PRINT
W: PRINT "ZZ2Z27777




i5

LOGO words do not have to be English words.

EXERCISE 6:  Try
W: PRINT "HELLO "MOTHER "HOW “ARE "YOU :

PRINT expects only ONE INPUT so LOGO does not know what to do with

the extra words.

To have more than one word as an input you must put all the words
into a LIST. A LIST is like a stack of boxes each of which could
hold words or numbers. The boxes are all stacked on a pallet so

that they can be picked up as one stack.

L




'16

The list can be the one input for PRINT.

The beginning of a list, the top of the Stéck, is marked with [ and

the end of the list, fhe pailet is marked with 1. These two characters
are called LIST BRACKETS. We call ecach box of the stack an EEEEEQI of
the LIST.

EXERCISE 7:  Try typing
Wz PRINT [HELLO MOTHER HOW ARE YOU]
PRINT. (22772272773
PRINT [I AM 21 TODAYI
PRINT [1 23 4.5 6 71

W
W
W

LOGO does not leok in the boxes to find procedures to execute.

EXERCISE 8: Tfy typing
W: PRINT EFORWARD 1001

SUMMARY

You can make LOGO ignore typing mistakes.
- There are only three types of INPUT you can glve proceduresa
These are.NUMBERS. WORDS or LISTS.

NAME OF PROCEDURE INPUT EFFECT OF PROCEDURE

PRINT : : one number, teletype types input.
or one word,

or cne list,




17

4.  YOUR OWN PROCEDURES

A. Defining your own procedures

When you used the button box you were able to store a single segquence

of commands in the working memory. - This was calied DEFINING A PROCEDURE.

This was useful because once the procedure was defined you could run it
over and over again without having to remember or press the individual

commands .

L0GO allows you to definé as many separate procedures as you like and
stores them all in your section of the working memory, Because you
can héve more than one procedure in the working memory it is necessary
to give each procedure its own NAME so that you can run the one you

want.

Defining a procedure is like telling a WORKER how to do a job. Your
~instructions to the worker will be an ordered sequence cf commands.

For example:-

H04 TG BOIL Aw EGG

T GET AN EGG

2 BOIL SOME WATER o

3 PUT THE EGG IN THE WATER

4 WAIT A FEW MINUTES

5 TAKE THE EGG OUT OF THE WATER
THATS ALL

In order to define a procedure you must put LOGO in the DEFINING STATE.

There is a procedure named
DEFINE

.to do this which needs one input. This input must be a LOGO word.

Tt is used to make the NAME of your new procedure.

When the computer is in the DEFINING STATE the PROMPT changes to
D:

You can use any LOGO word, e.g. "FRED or "SQUARE which you must make

up yourself,




i8

In our example we show how we define a new procedure which will be

named SPIKE whose job will be to draw a spike.,

W: DEFINE "SPIKE
~ D: 1 FORWARD 55
D: 2 LEFT 110
D: 3 FORWARD 80
D: 4 LEFT 140
D: 5 FORWARD 80
D: END

When LOGO is in the DEFINING STATE commands will mot be executed, they
will just be stored away TIDILY in LINE NUMBER ORDER as instructions
for the worker named SPIKE.

The procedure named END changes LOGO back to the WAITING STATE and tells

LOGO that the worker has been given all his instructions.

Once the procedure is defined it is stored in the working memory until

you run GOODBYE which empties the working memory.

EXERCISE !: Define the procedure SPIKE,

You may name it something else if you wish.




19

B. Running your own procedure

In the button box you pressed a special button to run the one

procedure you could define.
In LOGO we run procedures by iyping their names without the quote sign.

LOGO assumes that names without quote signs are procedures to be -
executed. Running your procedure is like telling the worker to
actually carry out the instructions you have already told him.

For example: "Boil an egg, please! ".

To run the procedure SPIKE we just type its name WITHOUT THE QUOTE
SIGN.

EXERCISE 2: Run the procedure SPIKE
W: SPIKE
W:

Run the procedure a few more times.

SPIKE'S job is to supervise the execution of his five commands.in the
right order. Fach onme of his commands contains the name of one of
LOGO'S procedures, or workers. SPIKE will have to supervise these
other workers. Executing a procedure is a PROCESS which takes -time.
To help explain how SPIKE supervises his workers we will draw some

SNAPSHOTS from a MOVIE of him doing his job.




When we run SPIKE by typing

W: SPIKE

LOGO ‘looks up the name SPIKE in its ()
working memory and calls the worker

SPIKE. .

SNAPSHOT 1

SPIKE reads his first command and
calls up the worker FORWARD from
working memory. SPIKE Hands cver
to FORWARD and leaves a marker on
the line he has reached to,remémbef

how far he has got.

SNAPSHOT 2

FORWARD mneeds one inpuﬁ and reads ' CPIRE ™™,
it from the line in SPIKE which W
called him. FORWARD does his work

and then tells SPIKE when he has

finished.

SHAPGIOY 3




SPIKE looks at his marker and moves
to his next command which involves

calling up LEFT.

SNAPSHOT 4

Sometime later, when SPIKE has

executed all his five commands,
having called up five other workers,
SPIKE tells LOGO that he has

finished.

SNAPSHOT 5

LOGO types the prompt W: It is
waiting for a new command. The

EFFECT of SPIKE was te draw a spike.

SNAPSHOT 6




22

C. Seeing your own procedures typed out by LOGO

There 1s a proéedure you can run to have LOGO type out the whole of

one of your own procedures. This procedure needs one input, the LOGO
word used to make your procedure mame. The name of this procedure
isi~

SHOW

EXERCISE 3:  SHOW the procedure SPIKE
W: SHOW "SPIKE

EXERCISE 4: Try typlug
W: SHOW SPIKE

When you typed this LOGO tried to draw a spike and
you got a funny message. This was because SPIKE did
not have a quote sign in front of it. Sc LOGD tried

to execute it.

You now know enough about LOGO to make a whole variety of procedures.

Here are some ideas:—

EXERCISE 5:  You could draw procedures for a &iamond,
a hat, or any other shape.
You could try this procedure out on

vour friends.

W: DEFINE "SURPRISE
D: 1 PRINT L[THE PERSON SITTING AT THIS TELETYPEI]

D: 2 PRINT "IS

D: 3 PRINT "VERY

D: & PRINT "VERY

D: 5 PRINT “VERY .
D: 6 PRINT 'P

D: 7 PRINT “A

D: 8 PRINT 7

D: 9 PRINT "I

D: 70 PRINT "E

Bz 11 PRINT "N

D: 12 PRINT T
. Dz END

In note 6 we will tell you what to do when the EFFECT of running your |

procedure is not what you intended!

&




23

SUMMARY

LOGO can be in one of three states:— WAITING, EXECUTING or DEFINING.

WAITING g
STATE |
GIVE Commang ! We : DEFINE
§ o)
Ve
S S
/ e
// 4
v OGN D
EXEUTING. V) PRse
STARATE

i
|
i
|

The PROMPT tells you in which state LOGO is.

The new procedures are:

NAME OF PROCEDURE INPUT EFFECT
DEFINE LOGG word to be a puts LOGO 1in the
' procedure name defining state.
END no input puts LOGO in the

WAITING STATE.

SHOW £060 word which is types ocut procedure.

a procedure name






24

5. TIDY LOGO

-

LOGD in the DEFINING STATE is very TIDY. It stores the commands of

your procedures in the order of their line numbers even if you type

the cowmands in the wrong.order!

The line numbers do not even have to count up in ones. You could
have 3,2.7:103,54 or 10,20,30.40 as line numbers. LOGO always puts
the commands in the order of size -of the line numbers, with smallest

first.

EXERCISE 1: Try defining this procedure FUNNY
in this wrong order.
W: DEFINE “FUNNY

50 FORWARD 420

10 FORWARD 120

"33 FORWARD 120

70 FORWARD 120 -

40 LEFT 135

60 LEFT 45

20 LEFT 45

END

L) (R} an

O O O o o o o o
'

What shape would“it draw ?

" RUN' the proceduiﬁ to see if you were right.

SHOW the procedi¥e to see that. LOGO has tidied it.

While you are defining a procedure, and £0GO0 is still in the. DEFINING
E§IﬂI£ you may notice that you have typed in a line wrongly. Just
‘type the line again with the same line number. Tidy LOGO will not
let a procedure have two lines with the same number. So the o0ld line

will be rubbed out and replaced with the néw version.



25 -

. EXERCISE 2: Why do you think LOG0 does not allow
) two 1inesrin_a procedure with trhe same
number? | _
How will LOGO tidy the following
procedure AWFUL 7
Check your answer by defining it

_as it 15 below,

W: DEFINE "AWEUL
D: 5 FORWARD 80
D: 5 FORWARD 180
D: 10 LEFT 90
. D: 15 FORWARD 280
D: 20 LEFT 90
D: 5 FORWARD 280
D: 15
: 12 FORWARD 280
: END

Now SHOW procedure AWFUL.

In future we will usually define procedufes with the line numbers
counting in tems, 10,20.30 etec. This leaves room for dther lines

to be INSERTED if we forget them.

SUMMARY

LOGO TIDIES your procedures by putting the limes in order.




26

. 6. CORRECTING MISTAKES IN YOUR PROCEDURES

‘There are two klnds of mistake or BUGS whlch may make you Wlsh o CHANGE

one of your proeedures.-'ﬁ, . ST o L

' _(A),tthe procedure does - not have the EFFECT you wanted
- (PROBLEM BUG). - o o

(B) there is a- oommand in the procedure Whl LOGO canﬂot?exeeute""

{GRAMMAR BUGY

In Ehls note we w111 show you how teo deal W1th grammar bugs,- In a Iaterf

- note we will deal with problem bugs.

-:'.EXERCISE 1: Deflne ‘this procedure Wlth 1ts mlstake._
| Wz DEFINE "GROTTY
- D: 10 FORWARD 100
D: 20 DAFT 90
D: 30" FORWARD 100
D: END |
- _Bgﬁ_ghecpyoCedure;

The MESSAGE tells you:=< . |
whlch command eannot be executed

why the’ command cannot be; executed

whlch pﬁoeedure‘contalned-the-eommand”

which 1iné of the procedure co:ntai;ried the eoMaﬁd
- TO correct the bug in thlS procedure we. need to, REPLACE line 20, - -

EXERCISE 2'5' Try typlng a replacement for 11ne 20, o, g
W 20 LEFT 90 ' ' L

LOGO did not know What to do because 1t dld not know whlch procedure you
wanted to change There are usually a lot of proeedures all w1th llne-”

205! ‘,'ﬂ\ﬂ}ﬁg Eeln D

"“Ihere'is a procedure heﬁed

' CH{ANGE
which needs one imput. This input is the quoted name of the procedure
~you wish to ehangen - When CHANGE is executed LOGO 1s put 1n the .
' DEFINING STATE. - The prompt ehangee to :

Y




27

Once £0G0 is in the defining state we can retype any iine we want to
change. Tidy LOGO throws.away the old version of the line and stores

the new ocne.

EXERCISE 3: CHANGE the procedure GROTTY
) _W: CHANGE_”GROTTY
D: 20 LEFT 90
D: END

Lines not mentioned are mot changed.
Type SHOW “GROTTY to see how line 20 has
been replaced.
In the same way new lines can be INSERTED if need. All we have to do
is run CHANGE and type in lines with the right new nuﬁbersa
EXERCISE 4: Insert new limes into GROTTY so that

it draws an cpen box

Sometimes it is necessary to DELETE lines from a procedure. 'Again you
just run CHANGE and then run the procedure DELETE, This procedure needs
one input which is the line number cf the line you wish to delete, The

procedure DELETE can only be run after LOGO is in the definming state.

EXERCISE 5:  Delete lines 10, 20 of GROTTY so that
7 - its effect is now Lo draw- an L.shape
W: CHANGE “GROTTY '
D: DELETE 10
D: DELETE 20
D: END _
" Run and SHOW the latest version of GROTTY.-

Tidy LOGO will not allow you to store away two procedures with the same
name .
EXERCISE 6: Tyy to DEFINE GROTTY again
W: DEFINE "GROTTY




28

SUMMARY

You can change one of your procedures by running CHANGE and making the

appropriate correction. Lines may be REPLACED. INSERTED or DELETED.

The new procedures are

NAME OF PROCEDURE INFUT : EFFECT
CHANGE - Quoted name of Sets LOGO in
"procedure to be DEFINING STATE
changed
DELETE line number iine is5 deleted.

e R

§ e "






29

7. TWO MEMORIES

N GFF _ ]
0 Q%'J F ] CcaAiuM's SCOTT'S
L0GO : TANS * DUGALD'S
SHAUN'S KENNETH Y
FIRST USER i?ﬁ?ﬁ,; ;ﬁ?ﬁ?ﬁ?ss
SECOND USER DAY B T

e : ~ GREGOR'S GRAEME'S

THIRD USER T c :
FOURTH USER| JASDN'S | EROBIN'S

WORKING MEMORY PERMANENT MEMORY

Any procedures you define are stored in your part of the WORKING MEMORY

until you finish your LOGO SESSION by rumning GOCDBYE. If you wish to

be able to run one of your procedures at another session and do not
want to have to defime it again you can command LOGO Lo REMEMBER the
procedure, LOGO will REMEMBER it by first making a COPY of the procedure,\
Then LQgg_W1liftransfer the COPY to your part of a special memory called -
the PERMANENT MEMORY.

Procedures in the permanent memory are safe even if LOGO is switched

off oy breaks down.

The prcce&ure for remewbering is named
REMEMBER

This procedure needs one input. This input should either be the quoted
name of one procedure tghbe remembered or a single LIST of procedure nanes,

for example

"SPIKE or [SPIKE SQUARE TRIANGLE]

LOGO never looks imside a LIST for procedures to EXECUTE.

EXERCISE 1: Command LOGC to REMEMBER the procedures you
have defined in WORKING MEMORY today. If
you have not defined a procedure yet, define
one.

W: REMEMBER "SPIKE
SPIKE REMEMBERED

The permanent memory has a magnetic disc. This works in much the sawme

way as a magnetic tape cassette in a tape-recorder.




30

It is usually a good idea to command LOGO to REMEMBER your procedures

once you have defined them since they will be safe should LOGO break down.

LOGO only makes a COPY of a procedure when it remembers it, like a photo-
graph. If you CHANGE the original procedure in WORKING MEMORY the CopY,
or photograph in PERMANENT MEMORY will not be affected, “Photographs of

yourself as a baby do not change as you get older!

EXERCISE 2: Make sure that you have commanded LOGO to
REMEMBER all the proéedures you wish to keep.
Then run GOODBYE _ _
Then start a new session by typing ELOGO
Try to rﬁn any of the procedures that used

to be in working memory.

When you start a session the working memcyvy is empty. Before you can
run one of your remenmbered procedures you will have to command L0OGO to

RECALL the procedure from the permanent memcry. The nane of the

procedure which does thls is

RECALL

“This procedure needs one input, either a single procedure pame or a list

or names, just like REMEMBER,

EXERCISE 3: Command LOGO to RECALL all of vour procedures

from permanent memory.

When LOGO RECALLS a procedure from permanent memory it just makes a COPY

of the procedure and tramsfers the copy to working memory. This means
that whatever you do to the copy in working memory you will always have

the original version safe in permanent MemOTy.

If you ever give LOGO a command which would make it put a copy of a

procedure with a certain name into = memory where there is already a




31

S

procedure with the same name then the procedure put in last is the one

kept,

This-ié just like TIDY LOGO in the defining state. If you define a
procedure with two lines with the same Iiﬁe number then the line typed

last is the one kept.

In the same way TIDY LOGO does not let you DEFINE two pfocedures wiﬁh

the same name,

EXERCISE 4: Qefine a procedure mnamed TWIN
‘W: DEFINE "TWIN
D: 10 FORWARD 100
DT END _
TWIN DEFINED _
Then try to define TWIN again. Ca
If you want to erase a procedure from working memory so that LOGO no
longer knows thé definition you must run the p;oce&ure

“UNDEFINE

which needs one input which should be-the name of your procedure to be

undefined.
EXERCISE 5: Erase the definition of TWIN
' W: UNDEFINE “TWIN
Now;gou could define a new procedure TWIN

i%ryou wished.

If you wish to erase a procedure from the permanent memory you command

LOGO to forget it by running the procedure

FORGET

which needs one input, like REMEMBER.

EXERCISE 6: Command LOGO to FORGET a procedure in permanent
- memory. Be careful to choose one you do NOT

want to keep!
W: FORGET "SPIKE



32

SUMMARY
SPIKE
CHANGE "FRED e -
: FRED
> REMEMBER :
SQUARE SQUARE ] SQUARE _FORGET "SPIKE
CseeE [ |
DEFINE "JIM < F '
< - RECALL
TRIANGLE |&mnict TRIANGLE
. . TRIANGLE
UNDEFINE "TWIN DRl | I
’ e
YOUR SECTION \ " YOUR SECTION
OF OF
WORKING . PERMANENT.

_ WMEMORY © - . " MEMORY
Only procedﬁrés in working memory may be run or changed or undefined.

Only procedures‘in pérmanent memory may be kept frow day to day.

A procednre in working memory may be copied (photographed) into

permanent memory by rumning REMEMBER.

A procedure in permanent memory may be copied into working memory By

: running‘the procedure RECALL, It may be forgotten by rﬁnning FORGET.

The new procedures are:-

NAME OF PROCEDURE | INPUT EFFECT
REMEMBER procedure name or list of © copies from working
‘ . names - to permanent memory
RECALL : procedure name or list of coples from permanent
names to working memory
UNDEFINE _ procedutre name : erases definition

from working memory

FORGET , 'prQCedure name . . érases definition from

permanent memory.




8. PREOBLEM BUG

oo
k-

/li

R

When you try the following exercise your work will probably be
attacked by a PROBLEM BLS,

EXERCISE 1: = Define a procedure named SQUARE which
draws a square.
Define a procedure named TRIANGLE which
draws a triangle.
Command LOGO to draw a house by running

SQUARE and then running TRIANGLE,

You probably found that the rgof did not go where you wanted it to.
This is caused by a PROBLEM BUG. We call the process of solving such
problems DEBUGGING, '

HINT: Think about the TURTLE STATE, its beading and positicn,

after it has drawn the squaré.

SUMMARY

One of the best breeding grounds for problem bugs is when you use

several of your own procedures together.







34

Ve have described procedures as WORKERS. So far ail the workers have’
been run because they produce some EFFECT. In most cases the effect
hae depended on an INPYT. The woxkgrs are vary well disclpllned

They always listen for their input FROM THE RIGHT,

100

uses hands o EFFECT -

The workers will only carry out their effect once they have the cbrrect"
number of 1npucs. '

EXERCISE 1: Try running the drawing procedure named
" ARC

This §r0cedure'needs two number inputs.

Find out what the worker uses each input for.

There are other kinds of workers which do not produce an effect.”
These workerd use their inputs to calculate a RESULT which they'speak
to the worker ON THEIR LEFT. ' We are unable to see this RESULT unless

we arrange for it to be the input of a worker who produces a visible_

effect. The name of a procedure which only gives a RESULT is
»* .‘ ADD -

This procedure needs two inputs, both of which should be numbers.




35

EXERCISE 2: Try typing
W: ADD 4 5
W: PRINT ABD 4 5

In the second line of the exercise two workers were arranged so that

the RESULT from ADD was the INPUT to PRINT

Remember all the workers lock for their inputs to their righr,

There are several other procedures which calculate a result. They

each need two number inputs. Their names are

SUBTRACT
MULTIPLY
DIVIDE

EXERCISE 3: Cbmmaqd LOGO to do calculations for you using
' these procedures
Command LOGO te add up three numbers. This is
haxd as the procedure ADD needs only twé inputs?

HINT: Arrange more than one worker ADD in your command.




36

LOGO only knows about integers (whole numbers) so the procedure

DIVIDE calculates its result to NEAREST WHOLE NUMBER below the answer.

EXERCISE 4: Try ,
W: PRINT DIVIDE 8 3
W: PRINT DIVIDE 5 12

There is a procedure named
REMAINDER

which needs two inputs.. This procedure gives as its result the
remainder obtained when its second input is divided intc its first

input.

EXERCISE 5: Try
W: PRINT REMAINDER 22 5

SUMMARY

Some procedures like PRINT or FORWARD produce an EFFECT. Other
procedures like ADD or SUBTRACT calculate and give a RESULT. In
order to see this result it has to be the input of a procedure which

gives an effect.

The names of the new procedures are:—

NAME OF PROCEDURE INPUT RESULT
ADD two numbers adds numbers
SUBTRACT two numbers subtracts second number from first
MULTIPLY two numbers multiplies numbers
DIVIDE twe numbers divides second number into first
REMAINDER two numbers remainder when second number

divided into first

ARC - two numbers draws arc curving left of radius
given by first input and angle

given by second input.







37

10. CALCULATING RESULTS

In the last note we showed you how you can give LOGO complicated
commands . These commands are made by arrariging the workers so
that each one locks for its inputs on the right and hands on its

result to the worker on its left.

The worker at the extreme left must produce an effect rather than
hand on a result: Otherwise we will never know what the workers

did.

You can give LOGO very complicated commands if you wish. But it is

important to understand how LOGO reads your command,

EXERCISE 1: Try to work out what LOGO will print when
you command 3
W: PRINT ADD 7 SUBTRACT 5 2
W: PRINT SUBTRACT 7 ADD 5 2

LOGO reads your command from left to right looking for the correct
number of inputs for each procedure it finds. On the next page we
have drawn a series of SNAPSHOTS from a movie of LOGO executing a

SINGLE COMMAND. Remember a single command is just one line of

typing.

In the snapshots we have used boxes to represent the workers. The
arrows going into a box from the right are inputs. Any arrow
coming out of a box on its left is its result. A box with ne arrow

coming ocut is a worker who produces an effect, e,g. like PRINT. -




38

Wi PRINT ADD 7 SUBTRACT 5 2

SNAPSHOT 1 |

PRINT LCGOD tries:to
execute PRINT
SNAPSHOT 2 PRINT j+o—7 but PRINT needs
an input
SNAPSHOT 3 PRINT |+« ADD LOGO tries to
find the result of
SUM as the input
SNAPSHOT 4 PRINT |« ADD e but ADD needs two
e inputs itself
Aei] . . .
SNAPSHOT 5 PRINT i+ ADD the first input is
s 7 but another is
neaded
t] .
SNAPSHOT 6 PRINT;.+ ADD SUBTRACT the result of
- SUBTRACT will be
the second iriput
{ ‘. > :
SNABSHOT 7 PRINT |« ADD / SUBTRACT i 7 ?ut SUBTRACT
) itself needs two
inputs
| 7 _ 5 ? 1srthe first
SNAPSHOT 8§ PRINT i+ ADD SUBTRACT input for
Ao} *%?“‘? SUBTRACT
' . 7 ey and 2 is the
SNAPSHOT 9 PRINT I= ADD SUBTRACT D second input
—7 SUBTRALT has
SNAPSHOT 10 PRINT |« ADD _ enough inputs. Its
PR——1 result is 3;
SNAPSHOT 11 PRINT |+—10 ADD has its two

inputs, Its
result is 10

SNAPSHOT 12

D

PRINT has its input
and hag the effect
of printing 10 at
the- teletype




39

EXERCISE 2: Draw a similar series of snapshots to show how

the following command is executed:
W: PRINT SUBTRACT 7 ADD 5 2

Type in the following commands after working
out what LOGO will print (can you work it
out faster than LOGO does?).

: PRINT ADD SUBTRACT 2 5 7

: PRINT MULTIPLY ADD 2 5 7

: PRINT ADD 2 MULTIPLY 5 7

: PRINT MULTIPLY 2 ADD 5 7

: PRINT ADD MULTIPLY 2 5 7 9

: ‘PRINT ADD 1

: PRINT ADD ADD ADD ADD 10 100 1000 10000 100000

LT £ = £ = = =

Remember that there is g dlfference between procedures llke PRINT which

produce an EFFECT and thcse like ADD which glve a RESULT.

INPUT




40

EXERCISE' 3: Try using & procedure which produces an effect,
like FORWARD as if it gave a result

W: PRINT FORWARD 100

The input for FORWARD can be the result

of some other procedure. Try

W: ‘FORWARD ADD 100 200

Using BRACKETS

You can put in RQUND BRACKETS to help you see which imputs belong to

which procedure For examp1e°

W: PRINT ADD (MULTIPLY 2 5) 7
W: PRINT ADD 2 (MULTIPLY 5 ?)'

Inside any matching pair of round brackets, ( ), you can put a
procedure and its inputs, Any of these 1nputs could be the result

of some other bracketed procedure w1th ;cg inputs.

You can read LOGO round brackets in the same way as you read brackets

in mathematics.

EXERCISE 4: Work out what the effect of the following

command will be and then check your answer.

': PRINT ADD (MULTIPLY 3 4) (MULTIPLY 2 CADD 1 5) )

SUMMARY

LOGO reads commands from left to right. | The command will often be an
arrangement of procedures. Each procedure will look for 1nputs on 1ts
right and give results to the procedure on its left. The procedure':
on the extreme left w111 always be the last to be executed and should

produce an effect rather than give a result.




41

11. SUPER-PROCEDURES AND SUB-PROCEDURES

Here is a single procedure which will have the effect of drawing & ‘house

when run.

W: DEFINE TOUSE
g% TO SQUARE
D¢ “20°LEPT 60
D¢ 30 TRIANGLE
Dis - END

EXERCISE:l ¢ Define and run the procedure named HOUSE.

If you got an error message when you tried to run HOUSE it may have o
been because LOGG did not have a copy of the procedure SQUARE in its

working memory.

EXERCISE 2+ -If yoﬁ have a procedure SQUARE in permanent'meﬁory* .
) RECALL it to working memdxy;
Otherwise define a suitable square procedure,
Do the same for the proce&ure:TRIANGLE,
Now run HOUSE. |

You may have to get rid of some problem bugs befote the HOUSE ﬁrocédure
has the effect'you wanf. - ' ' -

Such a procedurs HOUSE which has your own procedures inside it is called

a SUPER-PROCEDURE.

The procedures inside are ealled SUB~PROCEDURES.

S

The worker HOUSE supervises your own workers, SQUARE and TRIANGLE, as well
as the LOGC procedure LEFT., This is done in just the same way as the~

procedure SPIKE supervised his workers in note 4.

On the next page are drawn some spapshots from a movie of the pfocedﬁré

HOUSE being executed,




42

We run procedurs HOUSE

W HOUSE

|20 LEFT 60
30 TRIANGLE

SNAPSHOT i

: S&UAKE : HOUSE talls on worker
S ' ' CSQUARE.  HOUSE leaves

a marker on line 10

1 FORWARD {100
RIGH’I{ 9
FQ§$AR:JTOO
RIGHT 60
FORNAR% 100
RIGHT 60
FORWARD 100
RIGHT 40

i
30 TRIANGLE

0 =~ O wt P

SNAPSHOT 2 _ = . - |
| ' “CAUARE . SQUARE calls on
) ' FORWARD providing
him with his input
" of 100. SQUARE

leaves a marker on

20 | LEFT 60 : 2 RIGHT 90
30 TRIANGLE 5 FORYARD) 300
C}/) (J—"]4 ryeH 190

| 5 FORWARD 100
| 6 RIGHTS90
FORWARD 100
8 RIGHT 90

his line 1.

SNAPSHOT 3




43

S0 SAQUARE next calls
on RIGHT giving him
9 as his input

LEFY 60
30 TRIANGLE

RIGHT 90
FORNARDIﬂOO
RIGHT, 40
FoRWARD 10040~ C)///J
RIGHT 90

FORWARD 100
RIGHT 90
\

kj

(e N NV

T T MeR R MAN e s e e e e s s Gk St G Cwme (MaD Bnm G e D Tkt S e s em v Gt e e W G Wi e Bt i e O o o o

eventually SQUARE
finishes all his
work, He reports;
to HOUSE ‘that he

has finished.

20 LEFT}60
30 TRIANGLE

SNAPSHOT 5

HOUSE next calls
LEFT providing him

with his input of 60

%
?’
Y

~ SNAPSHOT 6



44

A UDUSE /ARANG, HOUSE next calls on
7y J TRIANGLE.  HOUSE'S

marker is now on line

+0-SQUARE] 1 FORWARD, 100 30
P 2 RIGHT 120
_ | 3 FORWARD 100
C\\/TR\IANGLE 4 RIGHT120
' 5 FORWARD 100
6 RIGHT}120

SNAPSHOT 7

R PR oSm em e oom om oom o mn mw MR Cm am ee G e M DD N0 bw G mm oM o e M0 O Om D Ow e o om om oma e oo e mo om mn ae

TRIANGLE calls on
FORWARD giving him
) the input 10G

CjFORw¥;ﬁ100

H i . g SR c g
2 RIGHT 120 A } TRIANGLE matks 1;2e31u
3 FORWARD too - S ECET
& RIGHLA20 gg - S/ ,
5. FORWARD 10 . | :
6 RIGHT%120

G SUGE DAeS SR ek e TATR B e e MR UM e e ol Gl G S o TR WD ek e o e MG DMNR SS Crtn cmwn  GmEv cE  mem R AeR Do Covok ke obmmh | cmmny | o

J ) LEFT-60

TRIANGLE

Eventually TRIANGLE
finishes all his work.
He reports to HOUSE who
thus also finishes.

The drawing of the house

iz now complete,

- .. SNAPSHOT 9




45

EXERCISE: 3 Try to define a procedure named TOWER which uses.
SQUARE and TRIANGLE ag sub=procedures.

Iy
4

S
Can you define a procedure STREET which uses HOUSE
as a sub-procedure?

N/

Can you define a procedure TGHN which uses STREET
as a sub=-procedure? ' ’

/N/\/

ANANAN

TAVAVAVAN

- SUMMARY .

A plastic LEGO set has a number of different building blocks. These

can be assembled into a whole variety of different models.

In LOGO your sub-procedures can be assembled into a whole variety of
different super-procedures,







46

c

12, BREAKING DOWN PROBLEMS

g/
k<
-

/

N

This piéture; designed by a LOGO student could be drawn in ome of three

ways:

a)

b)

c)

By giving single drawing commands one after the cther (about 100,
count them). This has disadvantages: it is easy to lose traék,
if you make a mistake you have to start from the beginning asain.
If you want to draw the picture again you have to repeat the whole

sequence of commands.

By making one procedure of all the long sequence of commands;
This has many of the disadvantages of method a), plus the fact that

it is hard to debug.

By breaking down the problem of drawing the whele picture into the
smaller sub-problems of drawing parts of the picture, In this
flower picturz one sub—problem is that of drawing the diamond shape

which appears nine times.

This last method has several advantages: the big problem of draﬁing

the flower is broken down into smaller problems which will usuallyibe -

easier to solve.



47

The different pieces of the flower can be debugged separately and

corrected before putting them together tc draw the whole flower.
These different pieces can be used tc make other pictures.

The sub-procedures you write will -be easier to debug because you will

be able to match them to the different parts of the whole picture.

We are going to show you how to draw the flower by BREAKING DOWN THE
LARGE PROBLEM INTO SMALLER SUB~PROBLEMS.,

EXERCISE 1: Define and debug a procedure to draw a diamond,
Hint: you may find it useful to arrange for your
procedure DIAMOND to leave the TURTLE in the same state

ag 1t found it!

The flower bloom can be made by writing a procedure which draws a petal
and turns a bit, keeping going until it has drawn all the petals, as.’
you might draw such a bloom using'a stencil'cut'out in the shape of a

diamond.

Using your procedure DIAMOND as a subépfogedure this is how oné might

define a procedure to draw the bloom:

W: DEFINE "BLOOM

D: 10 DIAMOND
D: 20 RIGHT 45
D: 30 DIAMOND
D: 40 RIGHT 45
D: 50 DIAMOND
D: 60 RIGHT 45
D: 70 DIAMOND
D: 80 RIGHT 45
D: 90 DIAMOND
Dz 100 RIGHT 45
D: 110 DIAMOND
De 120 RIGHT 45
D: 130 DIAMOND
D: 140 RIGHT 45
D: 150 DIAMOND
Dz 160 RIGHT 45
D: END




48

This 1is 1ongmwinded" -1t can bm shnrtened because there is a repeated

pattern to the commands i~  diamond s¥ight,diamond, right etc,
EXERCISE 2: Define the procedure which draws a dlamond and turns right,

W: DEFINE “BLOOMBIT
Dz 10 DIAMOND T P
Dz 20 RIGHT 45 o
Bz END

We could then changetBLOOM so that it uses the sub%procedure BLOOMBIT,

We DEFINE "BLOOM o

D: 10 BLOOMBIT
D: 20 BLOGMBIT
D: 30 BLOOMBIT
De 40 BLOOMBIT
Dz 50 BLOOMBIT
D: 60 BLOOMBIT
D: 70 BLOOMBIT
Dz 80 BLOOMBIT
D: END

This new version of BLOOM is shorter than before, But because we have

named and defined a sub=procedure BLOGMBIT which we wish to have repeated

,elght times by BLOOM we can use a special LOG0 procedure. The.namezuf

‘this procedure is

REPEAT

It needs two inputs., The first inpuf must be a number, The second

input must be a procedure to be repeated that number of times, A procedure
like REPEAT "which controls how a command i1s executed is called a
CONTROL PROCEDURE,

'E§§§£E§§_£ﬁ Try defining BLOOM as follows:—
W: DEFINE"BLOOM
D&l REPEAT 8 BLOOMBIT §
Dr  END

tun BLOOM to see how it draws the bloom,



49

The following diagram illustrates how the bloom is put together. The
boxes represent your different procédnres,“. Boxes.markedeDGOmS?Gﬂﬁ{

procedures contain oniy_p?ocedurés which L0GO knows already. "ThéféiQRﬁ@Q‘

out of a box point to the sub-procedurés if uses, . .

‘BLOOM

! LOGO'S OWN l 3LOOMBIT

N7
! _DIAMOND l : | iosa’s oun
1 LOGO'S OWN

EXERCISE 4: Try defining a procedure for the stem of the flowefel
For example: - N
W: DEFINE STEM
B: 10 FORWARD 160

~Di 20 LEAF
D: 30 FORWARD &0
D:z. END

We have referred to a procedure LEAF which we have not yet defined,
LOGO acceﬁts thigy but if yoﬁ try to RUN the procedure STEM before
LEAF is defined LOGO will not know how to execute LEAF and. give you a

Tessage.
EXERCISE 5: Try to run STEM.
Now define a suitable LEAF procedure and run STEM

againe.




EXERCISE 6:

EXFERCISE 73

EXERCISE 83
EXFERCISE 9:

EXERCISE 10:

56

When you héve debugged your STEM and LEAF-procedures
assemble these with the sub-procedure BLOOM into a
super-procedure FLOWER whose job it will be to draw

the whole flower,
Try changing FLOWER to put more leaves on the stem,

Try writing a procedure GARDEN which draws a row of

flowers.

Draw a diagram showing all the sub=procedures of
FLOWER like our diagram for BLOCM,

REMEMBER all your new procedures., (FLOWER cannot
work without its sub-procedures, These must be

remembered as well).

SUMMARY

Problems can be dealt with by breaking them down into sub-problems and

writing procedures to solve each of these sub—-problems.

The new procedure is:

NAME OF PROCEDURE INPUTS ‘ EFFECT

REPEAT

nunber,procedure a control procedure to
repeat the execution of
its second input a number

of times






51

13,  PROCEDURES WITH INPUTS (Part 1)

The mountain range is made out of triangles.,. The triangles are all.

different sizes., An easy way to try to draw this would be to use ﬁﬁéi‘

same triangle procedure to draw all the trianples,” This procedure

[as

. ~would have to be told how big a triangle it was to draw in each case.

It would be a procedure with an input, iike FORWARD. The input would

tell it how large to draw the trisngle.

This is what iﬁ could look like:~

W: DEFINE "PEAK "SIZE

bs
D:
D=
D:
D:
"D

D

10 FORWARD VALUE “SIZE .
20 LEFT 120

30 FORWARD VALUE “SIZE
40 LEFT 120

50 FORWARD VALUE "SI7E
60 LEFT 120

END

The title line of the procedure coutains the name of the procedure and

the name of ¢ne input, Procedure "PEAK will now expécﬁ.a‘value for itsi_g

input, pamed "SIZE, when it is vun. We ‘can choose any EOGG'ﬁpfd to be the

name of the input,




EXERCISE 1:

EXERCISE 2:

EXERCISE 3:

EXERCISE 43

Type in

Run the
W: PEAK
Wz PEAK

Bun the
Ws PEAK

Run the
Wz PEAK

Run the
Wz PEAK

;nput.'

FORWARD VALUE "SizZE
20 LEFT 120

30 FORWARD VALUE “SIZE_
40 LEFT 120
50 FORWARD VALUE_”SIZE
60 LEET 120

the definition of PEAK

procedure PEAK with different inputs e.g.
10

180

procedure with no input

procedure with two inputs

10 180

procedure with a word input, rather thanm a number

“BIG




53

Your procedures can have more than one inpuf;‘ Here is a procedure
which will write thank-you letters. The procedure needs three inputs,
the person you are thanking, the present you got and What you used the

present for,

W: DEFINE "THANK "PERSON "PRESENT “USE
D: 10 PRINT “DEAR
D: 20 PRINT VALUE "PERSON
D: 30 PRINT [THANK YOU FOR THE]
Dz 40 PRINT VALUE "PRESENT
Dt 50 PRINT "PRESENT
D: 60 PRINT [WHICH I USE FORJ
D: 70 PRINT VALUE “USE
D: END

EXERCISE 5: Type in this definition and then run the pro;édurewwith

fhree inputs e.g,

W: THANK "GRANNY "WATCH [TELLING THE TIME]
W: THANK [UNCLE JIM AND AUNTIE MARY] “COMPUTER {SITTING ON1

A list is one :mputa

"DEAR
VALUE.”PERSON-
PRINT [THANK YOU FOR]
PRINT VALUE "PRESENT
PRINT “PRESENT
PRINT [WHICH I USE HORIZ
PRINT VALUE "USE




54

Both PEAK and THANK use a new LOGO procedure named
YALUE

" VALUE meeds one input. To show how VALUE works we look at lines

40 and 50 of procedure THANK

40 PRINT VALUE “PRESENT
50 PRINT “PRESENT

When line 50 is executed the word “PRESENT is printed. - When line 40
is executed, procedure VALUE sssumes the word "PRESENT is a NAME.
In this case "PRESENT is the NAME of the second input for THANK.

So VALUE takes the second number word or list given to THANK when it

is run. VALUE gives this number, word or list to PRINT.:
EXERCISE 6: Try running THANK with a variety of inputs e.g.
W: THANK "DEAR "LOVELY [TARGET PRACTICE]

W: THANK [TELLING THE TIMEI “GRANNY “WATCH
W: THANK “2277 842 75

EXERCISE 7: Define a procedure INVITE which prints out party
' invitations '
EXERCISE 8: Define a procedure RECTANGLE which needs two_inputs;
the length and breadth of the rectangle. The procedure

should draw a rectangle,

EXERCISE 9: CHANGE your RECTANGLE procedure so that in addition to
drawing a rectangle it also prints -out the area ‘and

perimeter of the rectangle e.g.

W: RECTANGLE 8 3
AREA

24

PERIMETER.. "

22

W

SUMMARY

Your own procedures can have inputs just like LOGO'S procedures., Each
input is named with a LOGO word. VALUE is used to get the number, word or

1igt named by the input, The new procedure is:

Name of procedure : inpuq- C result
VALUE quoted 10OGO0 word Cfe¥iehes value named by

word




55

14, PROCEDURES WITH INPUTS (Part 2)
= e

In the last note you defined a procedure PEAK which needed one input,

Such a procedure can be used as a sub-procedure like any other.

is a super—procedure which uses PEAK as a sub—procedure.

W: DEFINE "MOUNTAINS
D: 10 PEAK 150
D: 20 PEAK 70
D: 30 PEAK 20
D: 40 PEAK 95
D: END '

EXERCISE 1: Define a procedure RANGE which draws a
mountain range using PEAK as a sub-

procedure

EXERCISE 2: Define a super-procedure CONIFER which

draws

TN
/N

/N
/N

(Hint: a useful sub-procedure would be ARROW which

draws A\ different sizes)

SUMMARY

Your procedures with inputs can be sub—procedures.

Here



[— R i EHR [ Seiseninins [T - E i s . . — RP— PR




56

15, CHANGING PROCEDURES (Part 2)

T

There are various reasons for changing the title line of a procedure,

e.g.

1. To change its name.

2. To change the number of inputs the procedure has.

EXERCISE 1: Define and run a procedure which prints
out a message, e.g.
W: DEFINE “"HAPPY
D: 10 PRINT L[GOOD MORNING]
D: 20 PRINT [WHAT A LOVELY DAY]
D: END
This procedure can be changed so that it greets a particular person

by name. First we must put LOGO back in the DEFINING STATE and make

the changes we want, for example

EXERCISE 2: Give your procedure an INPUT which it can use.
For HAPPY we would type
W: CHANGE "HAPPY
D: RETITLE "HAPPY “WHO
D: 15 PRINT VALUE “WHO
D: END |

EXERCISE 3: SHOW your changed procedure.

EXERCISE 4: Run your changed procedure.



37

We have used a2 new procedure named

RETITLE

This procedure can only be run when LOGO is in the defining state,
RETITLE does the following with its INPUTS which must be LOGO words.
The first word is used to make a new name for the procedure,

Any other words become the names of the inputs for this changed

procedure.

EXERCISE 5: Give your procedure a different name and
make it print a different message.
For example, we could change HAPPY to
MISERY and it could run as follows:—
Wi MISERY "FRED
GOOD" MORNING.D. .7

FRED-™ °~
ITS RAINY AND FOGGY AGAIN TODAY
W:
SUMMARY
NAME OF PROCEDURE INPUTS EFFECT
RETITLE New procedure name Changes TITLE LINE

and new input names




58

16. TWO MEMORIES ~(Part 2)

There is a procedure named
DEFINED

to help you keep track of what is in your working memory.  This

procedure needs to input.

EXERCISE 1: Try typing
' W: PRINT DEFINED

" The result of DEFINED is a list of the names of all the procedures in

your section of working memory.
There is a similar procedure named
REMEMBERED

whose result is a list of all the names of your procedures in permanent

Memory.

EXERCISE 2: Try typing
w: PRINT REMEMBERED

'REMEMBERED can also be used if vou want to copy all your procedures

from permanenu memory to working ‘memory in one g0.

EXERCISE 3: Try typing
W: RECALL REMEMBERED

Notice that RECALL is able to take either a list of procedure names as

an input or a single procedure name,

EXERCISE &4: Try typing
W: PRINT DEFINED

The names of all the prccedures now in working memory are printed.



59

DEFINED can also be used at the end of a LOGO session if you want to

copy all the procedures in working memory to permanent memory.

EXERCISE 5: Try typing
W: REMEMBER DEEINED

Notice that REMEMBER like RECALL can also have a list as input,

You may want to copy procedures from somebody else’ 8 permanent MEMOTY -

You have to run a procedure named
BORROW

BORROW needs one input. This must Be a list containing the name of the
person whose procedure you want to copy.

EXERCISE 6: Try typing
W: BORROW [TIM QSHEA]

Now you have beén connected to TIM OSHEA's permanent memor&.

EXERCISE 7: Try typing
W: RECALL REMEMBERED

and run any of the procedures you get

copies of,

EXERCISE 8: Try and REMEMBER one of the procedures in vour

working memory.

You will get a message telling you that you cannot do this, This. is-
because you are not allowed to remember procedures in other people's

permanent memories!




, 6¢_f

To get connected back to your 6wn‘pérmanént memory (and disconnected

from TIM OS_HEA“é)_ run the. procedure

RETURN
which needs no inputs.

EXERCISE 9: Try typing -
W: RETURN

EXERCISE 10: Use BORROW and RETURN to put a copy of somebody-—

else's procedure in your permanent memory.

UMMARY
NAME OF PROCEDURE -~ - INPUT | RESULT EFFECT
DEFINED - none listofprocedurenamés none
REMEMBERED none 1istofprocedurenames ~ non&g
REMEMBER word or 1ist . - - none : coples procedures
. : into permanent
mWemoTy .
RECALL  woxd or list -;' " none ' copies procedures
o into working
memoery.
BORROW - list : none connects you to
' another permament
MEMOTY .,
RETURN ' none ... noune '7 : connects you back

to your own
permanent WemoTy.







61

17. PROCEDURES WITH INPUTS - (Part 3)

In notes-13 and 14 we showed you how to define a procedure which takes

variable inputs. Such procedures could be used as sub—procedures.

EXERCISE 1: RECALL your procedure PEAK, which draws
variable sized triangles.

Show the procedure PEAK
It should be

DEFINE "PEAK “SIZE

10 FORWARD VALUE “SIZE
20 LEFT 120

30 - FORWARD VALUE “SIZE
40 "LEFT 120 -

50 FORWARD VALUE “SIZE
60 LEFT 120
e

hat

EXERCISE 2: Define a procedure HAT which uses PEAK as a sub-

procedure. It should draw a hat.

One solution might be

W: DEFINE "HAT
D: 10 FORWARD 20
D: 20 PEAK 100
D: 30 FORWARD 100
D: 40 FORWARD 20
D: END




62

However this HAT only fits one size of head.

itself have a variable input.

The procedure HAT can

The worker HAT will have to tell the

worker PEAK about the value of its input so that PEAK draws the right

size of triangle.

EXERCISE 3:

Define this procedure which can draw hats of any

size.

HAT.

W: DEFINE “WITCH “HEAD
D: 10 FORWARD 20
D: 20 PEAK VALUE "HEAD

D: 30 FORWARD VALUE "HEAD

D: 40 FORWARD 20
D: END

We have based it on our original procedure

Run WITCH with different value inputs.

The following snapshots are from a movie of the worker WITCH supervising

its other workers.

10 FORWARD 20
20 PEﬁ% éALUE “HEAD
30 FQRWARD VALUE "HE
[ 40 GoRurp 20

10 FoRgARb 20
20 PEAK VALUE "HEAD

40 FORWARD 20

AD

SNAPSHOT 1

i
30 FORWARD VALUE "HEAD
-’

SNAPSHOT 2

We run WITCH
W: WITCH 75

The worker WITCH is

called

but WITCH needs one input

which it gets from the line
which called it. As far
‘as WITCH is éoncerned'the
néme.of its input is "HEAD

and its value is 75,




T ["HEAD
75

.FDRUARD 20

20 PFAK VALUE “HEAD
’/,,4 30 FORH ARD VALL
{40 FORNARD 20

g

. Py
20) PEAK VALUE "HEAD

o
30 ?DRWAPE VALUE “HEA
40 FORWARD 20

Pté} VALUE "HEAD
30 FOEyﬁRDVALUECﬂ;AL
40 FORMWARD 20

. 10 FORwARD,MALUE “SIZ
20 LE#T 120
i 30 FOBH RD VALUE “SIZE

SNAPSHOT 32

1C FORWARD VALUE “SIZE
20 LEF !20
30 FqucRD VALUE “SIZE
40 "LEFT|120
50 FORWARD VALUE “SIZE
60 LEFT}120

SNAPSHOT 4

40 LEFT} 120 .

50 FORWARD VALUE "SIZE

60 LEFT{ 120

SNAPSHOT 5

WITCH ealls up FORWARD who
gets his input ZQifrdm the
line in WITCH which called

him

WITCH then reaches his line
20 . He calls vp PEAK.

But PEAK needs onéziﬁ?ut.

WITCH then calls up

_ VALUE who get his
input "HEAD. VALUE
finds out from WITCH _
that "HEAD is the name
of the value 75,

VALUE gives 75 as his
result to PEAK.




64
FEAK now has his input

named "SIZE which has

the value 75, He is

.ready to execute his

(D FORWARD VALUE “S1ZE | firet line.
20 Lgfﬁ 120

30 %R:ARD VALUE "SIZE

40 CEFT{120

50 FORWARD VALUE “SIZE

60 LEFT]120

' PEAQ/A LUE "HEAD

0F &%RIJVALUE "H{E_A/
40 HgﬁwA b 20 -

SNAPSHOT 6

PEAK calls on FORWARC.
But FORWARD neéds an

‘input. So PEAK calls
up VALUE. |

45 RE .. [iDForuARp yALUE “sTZE
(20) FEAK \@LUE "HEAD 0 LEFT 1 5
130 FORWARD VALUE "HEAD) OFOEEARDVALUE" 1ZE”
40 FORWA&D 20° 0 LEFT 1%0

0 FORWARD VALUE "SIZE

"

' _0 FORUARI’) VALUE "HEAD

40 FORHARD 26

ot . g w S,
30 FORWARD VALUE 52;5

0 LEFT 120

50 FORWARD| VALUE "STZE

60_LEFT 12

SNAPSHOT 8

S50 VALUE finds out, from PEAK that "SIZE is the name of the value 75, Thls is given

as the input tc FORWARD. The rest of the Drocecures are executed in turn until WITCH

finishes.




65

EXERCISE 4: RECALL your HOUSE procedure.
Change HOUSE and its subprocedures so that

you can draw any size of HOUSE

e.g.

W: HOUSE 10 ﬁ

W: HOUSE 50

 STMMARY

A super-procedure which expects an input can tell any of its sub-

procedures about the value of that input.







66

187 "POLYGONS .

i

The follbwing procedure can bé used tb-dréw;pentagons

W ﬁEFiNE "BASIC.
 Dr 10 FORWARD 100~
D:.20 LEFT 72

" D: END

- - EXERCISE 1:

DefinelBASIC=_and‘rdn;it_five‘timés.7
e.g. _. g )
W BASIC

W: BASIC

W: BASIC

W: BASIC

W: BASIC

or by'tunning'the'pontrol'prbceduretREPEAT

Wz REPEAT 5_BASIt}N‘_-

;Runnlng BASIC draws a pentagon because llne 20 is a turn of 72 degrees;

If we used a dlfferent angle we would get ‘a different polygon.

| EXERCISE,Z;

:If we make the angle used in llne 20 an input, BASIC would be used to-

Change llne 20 of BASIC so that it can be used

to. draw an, octogon

draw many different polygons.

 EXERCISE 3:

Change BASIC (using RETITLE) so that
W: SHOW “"BASIC

. types out

 DEFINE "BASIC “TURN
10 FORWARD 100
20 LEFT VALUE “TURN
END




67

'BEXERCISE 4:  Use BASIC to.draw a lot of different polygons
2.z, '
W: REPEAT 4 BASIC 90
W: REPEAT 24 BASIC 15

We can make a procedure to draw these polygons for ﬁs, It will need

two inputs, the angle and the number of sides,

EXERCISE 5: dDefine the following procedure which has a8
very short naﬁle° _
W: DE#INE "Z "ANGLE “NUMBER _
D: 10 REPEAT VALUE "NUMBER BASIC VALUE “ANGLE
bD: END

EXERCISE 6:° Run Z to draw more pdlygons

e.g.
W: 24 90
W: Z 90 4

The following diagrams show snapshots from the mévie of the worker Z

supervising the worker BASIC

We run 2

W: 2790 4

Z gets its two inputs. Its first input
named "ANGLE has the value 90, Its

g

!

S

"QL
]

SNAPSHOT 1

second input named "NUMBER has " the vaiue4'§

Z starts to execute line IO.andicalls‘
REPEAT which needs twe inputs. So Z

calls more workers.

{We have not written out Z's line 10

to save space.)

SNAPSHOT 2




68

. UNUMBER

VALUE is called. VALUE finds out from 2
that the value of "NUMBER is 4., This is

given to the control procedure REPEAT as its
first iaput. REPEAT knows that he will be
repeating four times, but he needs to know

what to repeat.

SNAPSHOT 3

s N
jw FORWARD 100
20 LEFT VALUE "TURN

The procedure toc be repeated is BASIC but
BASIC needs one input. So Z calis another

worker.

SNAPSHOT 7

VALUE finds out from Z that
the value of "ANGLE is 90.
This is given to BASIC,

BASIC takes the input valué‘-
9a.
concerned his input is named
"TURN.

As far as he is

BASIC can now start work.
BASIC calls FORWARD who
gets his input 100 from
line 10 in BASIC. FORWARD

draws a line.

BASIC now executes line 20.
He calls up two workers

LEFT and VALUE. VALUE finds
cut from BASIC that the value

of "TURN is




LEFT can now rotate the

&

turtle,

BASIC has been executed

ance,

SNAPSHOT 8

The contrel procedure REPEAT repeats the process shown in SNAPSHOTS 6, 7, and 8

three more times,

SUMMARY

A procedure can pass the value of its input to a sub~procedure,




70

19.  PROCEDURES WITH RESULTS

Try using a procedure which has an EFFECT as if it produced a RESULT, e.g.
the procedure FORWARD.

EXFRCISE 1: Try typing
W: PRINT FORWARD 100

So far all your own procedures have been defined for their EFFECTS, e.g.

on the drawing devices or the teietype.

EXERCISE 2: Iry typing
Wi PRINT ADD 7 3

The procedure ADD passes its result to PRINT.

If we want to specify exactly what the RESULT of one of our own procedures

is we use the LOGO procedure named

RESULT

This procedure has one input.  When RESULT is executed in one of your
procedures, the value of its input becomes the RESULT of the whole

procedure,

EXERCISE 3: Define the following procedure
W: DEFINE "NEXT "CARROT
D: 10 RESULT ADD 1 VALUE "CARROT
D: END

Run NEXT e.g.
Wz PRINT NEXT 7
W: PRINT NEXT NEXT 7

EXERCISE 4




71

This diagram shows how the workers NEXT talk to PRINT.

W: PRINT NEXT NEXT 7

T ADD 1 VALUE "CARROT

!

We have not shown the workers RESULT. ADD and VALUE who were also called.

EXERCISE 5: Define a procedure which doubles its input.
It.should work as follows:
W: PRINT DQUBLE 50
100

EXERCISE 6: Define zmd xrun the following procedure:
W: DEFINE “SUMANDIFF "X 7Y
D: 10 RESULT ADD VALUE "X VALUE "Y
D: Z0 RESULT SUBTRACT VALUE "X VALUE "Y
D: 30 PRINT "FINISHED |
D: END

Your procedures, like LOG0's, can only have one result. So LOGO stops

executing a procedure after executing the first RESULT it finds.

RESULT is a CONTROL PROCEDURE. That is why lines 20 and 30 did not get

executed.




72

EXERCISE 7: Define a procedure called SQUNUM which has one
7 input. Its result should be tﬁe square of its
input, 2.8,
W: PRINT SQUNUM ¢
&1

EXERCISE 8: Try typing

W: PRINT SQUNUM SQUNUM SQUNUM SQUNUM 2

SUMMARY

Your own procedure ﬁan have a RESULT. The new procedure is

NAME OF PROCEDURE INPUT RESULT EFFECT
RESULT word, number the same a control-procedure
or list as its which stops your
input procedure and makes

it give a result






73

20. RECURSICN
A procedure can have a copy of itself as a sub—procedure.

W: DEFINE "LAUGH
D: 10 PRINT “HAHA
D: 20 PRINT "HOHO
'D: 30 LAUGH
D: 40 PRINT "HEHE
D: 50 PRINT [PLEASE STOP TICKLING MEI
D: END

EXERCISE 1: Ruri this procedure,

To INTERRUPT LOGO executing a procedure, press the RED EMERGENCY STOP
BUTTON.  LOGO will type

INT:

Then to put LOGO back in the wailting state type @ followed by two
presses on the green command button. LOGO will return to the waiting

state

"EXERCISE 2: Interrupt LAUGH and return LOGO to the

waiting state.

Lines 40 and 50 of LAUGH never get executed. Each procedufe LAUGH,
when i1t reaches 1iné_30 calls for the execution of a sub—procedure

LAUGH. The following snapshots of the execution of LAUGH illustrate

this:-

We run LAUGH

W: LAUGH

SNAPSHOT 1.




T o

LAUGH calls PRINT HAHA
SNAPSHOT 2
LAUGH calls another PRINT AAHA
' HOHO
SNAPSHOT 3
LAUGH calls another LAUGH HAHA
HOHO
SNAPSHOT 4
“hind ' The new LAUGH- calls PRINT HAHA
HOHO-
HAHA
S SNAPSHOT 5 |
L PENT N ruoio The new LAUGH calls another HAHA
) 3 E?%ig PRINT . HOHO
{ L
\ : HAHA
} aE ' HOHO
_
o

SNAPSHOT 6




75

The new LAUGH cails yvet another HAHA
LAUGH "~ HOHO

' HAHA

HOHO

SNAPSHOT 7

HAHA
HOHO
HAHA
HOHO
HAHA

HAHA
HOHO
HAHA
HOHO
HAHA
HOHo:

4! _

SNAPSHCT 21 :



Here is another recursive procedure

~ W: DEFINE "HEXAGON
D:1C FORWARD 100
D:20 LEFT 60
D:30 HEXAGON
D:END

EXERCISE 3: Try out procedure HEXAGON.

EXERCISE 4: Change the turn in line 20 to LEFT 177

and run the procedure again.

We can write recursive procedures with inputs:-

W: DEFINE "BUR:NG "ADJECTIVE
D:10 PRINT VALUE "ADJECTIVE
D:20 PRINT "WEATHER
D:30 PRINT "TODAY
D:40 BORING VALUE "ADJECTIVE
D:END

EXERCISE~5: Try this procedure out

e.g.
W: BORING "LOVELY
W: BORING "COLD

The input for BORING is the word "LOVELY or the word "COLD. This is

given as the value of the input to each succeeding BORING sub=-procedure.

The sub—procedure in the recursion does not have to have the same value

input as the super—procedure.

EXERCISE 6: Try defining the following procedure
' ~ W: DEFINE "INSOMNIA "YAWN
D:70 REPEAT VALUE "YAWN PRINT "SHEEP
D:20 PRINT L[JUMPED OVER THE FENCE]
D:30 INSOMNIA ABD 1 VALUE "YAWN
D:EQD

Run this procedure with a number input

W: INSOMNIA 5




77

Each INSOMNIA proceduré has an input namedf"YAHN.- The first INSOMNIA
has 5 as the value of "YAWN. The sub-procedure INSOMNIA it calls has
6 as the value of its "YAWN. ' ' ' R

-EXERCISE 7: "Definé the following procedure which
| : 7 takes two inputs
W: DEFINE "SWOP "A "B
D:10 PRINT VALUE "A
D:20 SWOP VALUE "B VALUE "A
D:IEND

Run this procedure with any two inputs.

The following procedure, which needs two numbers as input, prints a whole

series of numbers.

W: DEFINE "SPAGHETTI “NUMA “NUMB
D:10 PRINT VALUE “NUMA
D:20 SPAGHETTI (VALUE “NUMB) (ADD VALUE “NUMA VALUE “NUMB)
DIEND - '

| EXERCISE 8:  Define SPAGHETTI and try it out with various
numbers. Try to guess what series of numbers
will be printed,

: SPAGHETTI 0 0

1 SPAGHETTI 0 1

© SPAGHETTI 1 0

* SPAGHETTI 1 1

: SPAGHETTI 100 0

: SPAGHETTI 0 100

=Z O T =T = ==

SUMMARY

A procedure can have a copy of itself as a sub-procedure, This is
called RECURSION. We shall use it again. There is a limit to the
number of unfinished sub-procedures which LOGO can keep in its

working memory.







_78m

21.  SPIRALS - S

We drew polygons in. note 18, by repeatedly going forward and turning.
We can use recursion to dvaw shapes’ llke SPiRALS whlch are like polygﬁn@

except that they progre331ve1y change as they draw.

EXERCISE 1: Define the following procedure:

'w:'DEFINE@aSPIRAL]fANGLE fSIDE fsTEP-_ | S 'f;_:leif':;'f
'D: 10 FORWARD VALUE “SIDE R '
D: 20 RIGHT VALUE “ANGLE
D: 30 SP _AL WALUE * ANGLE) (ADD VALUE “STEP VALUE SIDE)V%LUE STEP
D= END

Run the SPiRAL with different inputs e.g.

W: SPIRAL 90 0 10
W: SPIRAL ‘90 10 0
W SPIRAL - 60 50 10
W: SPIRAL 60 200 -10
EXERCISE 2: Define a version of SPIRAL in which the side'staysrgﬁe-t
: same but. the angle changes each time a new_%mfk@r SPiRALf

1s called,

SUMMARY
Recursion can be used to draw spirals, because each sub-précedure

SPIRAL passes on a changed value of one of the imputs' to the next

'SPIRAL sub-procedure,







_?9_.

22: TRUE OR FALSE

There are‘ﬁUESTION PROCEDURES whose names end in G. These procedures give

either the word "TRUE or thg"word "FALSE'as their result depending on the
value of. their input. R
EXERCISE 13 Try typing
W: PRINT NUMBERQ 3
W: PRINT NUMBERQ "THREE 3
W: PRINT LISTQ [THE CAT SAT ON THE MAT3
: PRINT WORDQ “THE
Ws PRINT EQUALQ 48 48
W: PRINT EQUALQ "THE [THE]
W: PRINT EQUALQ 3 &

"There is a question procedure named
NOT

This takes a word as its input. The word must be “TRUE or "FALSE

EXERCISE 2: Try typing
W: PRINT NOT "TRUE
Wz PRINT NOT “FALSE
W: PRINT NOT EQUALQ 3 4
W: PRINT NOT WORDQ “THE .

EXERCISE 3: ¥ind out what the following QUESTION PROCEDURES do:

LESSQ GREATERQ ZEROQ

It is possible to have anempty list (a pallet without any boxes én itl).

EXERCISE 4: Try typing

W: PRINT [ 1
W: PRINT EMPTYQ [ I
{: PRINT EMPTYQ [THE CAT SAT ON THE MAT1




- 80_

"It is also possible to havé;an empty word
EXERCISE 5: Try typing -

W
We

oWz

PRINT *
PRINT EMPTYQ *
PRINT EMPTYQ "THE

SUMMARY

The new procedures are:-

Name of procedure

NUMBERQ
LISTQ
WORDQ
'EQUALQ
LESSQ

GREATERG

EMPTYQ
ZEROQ
NGT

input

1 number word or 1list

1 1] " 1" "o
1 11 n 11 T

- 2 - ;l . 7 n _ll L1
2 numbers
2 numbérs

1 numbér word or list

1 " " n 1t

1 word "TRUE ox "FALSE

"TRUE

"TRUE
"TIRUE
“TRUE
"TRUE

*TRUE 1

"TRUE
*TRUE

regult

input a number

input a lis

inputs the

first input
than

first input
than

input empty

input @

t

input a word

same

“less
second

greater
second

1 word "FALSE or "TRUE



- 81 -

23.  CONTROL PROCEDURES

There are some special LOGO procedures which can control how a
command is executed. REPEAT and RESULT are both CONTROL PROCEDURES.
There is another CONTROL PROCEDURE named

IF

This procedure needs one input which must be either the word "TRUE
or the word "FALSE. This input will usually be the result of
running a QUESTION PROCEDURE. If the input is "TRUE then the

command following a MARKER the English word THEN is executed.

EXERCISE 1: Try . )
WeIF NUMBERQ 9 THEN PRINT [ITS A NUMBER]

EXERCISE 2: Try
- ~ W:IF EQUAL@ 3 4 THEN PRINT "SNAP

There may be another command we want to execute if the input to IF
is the word "FALSE.  The MARKER ELSE is used to mark the begipning

of such a command.

When we use IF we may want to type a command that is too long to fit
on one line. In cases like this we must tell LOGO that the command
is not finished when we get to the end of the line. We do this by
pressing the + button, before we press the green command button.

Wher a command_isrbeing continued onto another line, LOGO types the

prompt C: for continue.

EXERCUSE 3:  Try typing
W:1IF NUMBERG "CAT THEN PRINT [ITS A NUMBER] +
C:ELSE PRINT [ITS NOT A NUMBER]

EXERCISE 4: Try typing
WiDEFINE "LIAR "A "B
D:10 IF EQUALQ VALUE "A VALUE "B THEN +
C:PRINT LTHEY ARE DIFFERENT] ELSE +
C:PRINT [THEY ARE THE SAME]
D:END



82

Try out LIAR with various inputs.

EXERCISE 5: Try typing
| W: DEFINE "DOUBLEQ "A "B
~ D: 10 IF EQUALQ VALUE "A (MULTIPLY VALUE "B 2) +
C: THEN RESULT "TRUE ELSE RESULT "FALSE
D: END

Try out this question procedure
e.g. ) &

W: PRINT DOUBLEQ 10 5

W: PRINT DOUBLEQ 19737

W: PRINT DOUBLEG 5 10

EXERCISE 6: Try typing
W: DEFINE "PONTOON “SCORE |
D: 10 IF GREATERQ VALUE "SCORE 21 THEN PRINT "BUST
D: 20 IF EQUALQ VALUE "SCORE 21 THEN PRINT *PONTOON
D: 30 IF GREATERQ VALUE "SCORE 17 THEN PRINT "STICK
D: 40 PRINT “TWIST
D: END

Try this procedure out
e.g. |

W: PONTOON 25

W: PONTOON 21

W: PONTOON 18

The difficulty with PONTOON is that it does not stop after printing out
its first word. The control procedure RESULT is designed for exactly
this sort of problem. As well as returning its input as the result
of the procedufe it is in, it also stops any further execution inside

that procedure.

EXERCISE 7: Using RESULT define.a procedure NEWPONT .
7 | which returns as its result one of "BUST.
"PONTOON, "STICK or "TWIST.
Try it out -
e.g. .
W: PRINT NEWPONT 18




83

SUMMARY

We have introduced the new CONTROL PROCEDURE IF and its markers

THEN and ELSE.

WE have introduced the + button for continuing. long commands on

to extra lines.

Cord M And






24.  QUIZZES

You can usé LOGD to write Qulz procedures. These can ask your friends

questlons and respond to thelr ANSWers . Thére_is a L0Go prdcedure_named
REPLY

When -this procedure is executed a prompt

REPLY:
is. typed. LOGO then waits until the green command button 1s typed
Whatever was typed after the prompt and before the green command button

is made into a list. This list is the.result of executing the

procedure REPLY

jEXERcISE 1:  Try typing
| W: DEFINE "ECHO
D:10 PRINT [I WILL ECHO WHATEVER YOU TYPE]
'D:20 PRINT REPLY
' D:30 PRINT IDID YOU HEAR THE ECHOI
D:END '

Run this procedure and type in something to

¥ be echoed when you get the prompt.
EXERCISE 2: Try typing

W: DEFINE "FOOTBALL |
D:10 PRINT [WAT IS THE GREATEST +
- C: FOOTBALL TEAM IN THE WORLD]
© D:20 IF EQUALQ REPLY [PENICUIK WANDERERS] +
C: THEN PRINT [RIGHT ON] ELSE PRINT [WRONG AGAINI
D2EHD

. Try out this procedure.
b 2 .

EXERCISE 3: Type in a quiz procedure of your own.



85.

EXERCISE 4: Define a superprocedure which has two quiz

procedures as its subprocedures.

The following procedure TEACHER is very useful as a subprocedure in quiz

procedures. It can be used for any question and answer.

W: DEFINE "TEACHER "QUESTION "ANSWER
D:10 PRINT VALUE “QUESTION _
D:20 IF EQUALQ REPLY VALUE "ANSWER +

" C:THEN PRINT "RIGHT ELSE PRINT "WRONG
D:END

EXERCISE 5: Define TEACHER and then use it .in a,suﬁerprocedure
like the following
D: DEFINE "LESSON
W:10 TEACHER [WHAT IS 3 TIMES 431 [121 \
W:20 TEACHER [WHAT IS THE CAPITAL OF SCOTLANDI [CARDIFF]
W:30 TEACHER [WHY DID THE CHICKEN CROSS THE ROADI [TO +
C:GET TO THE OTHER SIDE]

W:END
SUMMARY
The new procedure is
NAME OF PROCEDURE INPUT _ EFFECT : . RESULT
REPLY Notie Types a prompt A 1ist of what was

typed in.




86

25, STOPPING PROCEDURES

In note 20 we defined a recursive procedure-INSOMNIA which looked like
this - . ) o ‘ '
W: DEFINE "INSOMNIA "YAWN
D:10 REPEAT VALUE "YAWN PRINT “SHEEP
D:20 PRINT [JUMPED OVER THE FENCE]
D:30 INSOMNIA ADD 1 VALUE "YAWN

D:END
EXERCISE 1: RECALL or DEFINE procedure INSOMNIA.
The only way you can stop INSOMNIA is by’interrppting it by pressing the

red emergency stop button. There is a way of defining INSOMNIA such
_that it stops when you want it to. There is a CONTROL PROCEDURE called

STOP

which needs no input and produces no result. Its effect is to stop the

execution of the procedure it is in.

EXERCISE 2: Type in the following change to INSOMNIA.

W: CHANGE “INSOMNIA ‘
D:5 IF GREATERQ VALUE "YAWN 5 THEN 3TOP
D:END

EXERCISE 3: Run INSOMNIA with different inputs
7 e.g. '
W: INSOMNIA &
W: INSOMNIA 1%
W: INSOMNIA 5



87

EXERCISE 4: Change INSOMNIA by adding the following
lines: -
W: CHANGE “INSOMNIA
D:40 PRINT VALUE "YAWN
D:50 PRINT "ACROSS
D:END

Run INSOMNIA with various inputs as before.

A procedure stopped by STOP produces no special result. Here are some

enapshots of what happens when you type

W: INSOMNIA &

We have not drawn in all the workers who take part in this process.

[HSOMNIA is called with & as

10 . .
o the value of its input
[ B0 INSOHNT 1 . |
55:;?0 PRAN VQLSED 3AS:LUF YAJN Line 5 checks whether the value
50 ég§§¢ "ACROSS ‘ ~of "YAWN is greater than 5.
; .
e : ' ,  SYAPSHOT 1

Lines 10 and 20 have the effect

of printing

SHEEP -
SHEEP
SHEEP
SHEEP
- [JUMPED OVER THE FENCE]

SNAPSHOT 2

INSOMNIA calls a new INSOMNIA

with 5 as the value of its input.

SNAPSHOT 3




88

SKAPSHOT 4

Line 5 checks whether the value
of "YAWN is greater than 5. It

is not so

Lines 10 and 20 print

 SHEEP
SHEEP

SHEEP

SHEEP

SHEEP

[JUMPED OVER THE. FENCE]

SNAPSHOT 5

b

SNAPSHOT 6

INSOMNIA calls yet another INSOMNIA -

-with 6 as the value of its input.

SNAPSHOT 7

Line 5 finds that the value of "YAWN
is bigger than 5; so this INSOMNIA
stops, and tells the procedure which

called it that it has finished.

SNAPSIOT 8

Now the second INSOMNIA can continue
on its 1line 40 printing

5
ACROSS

" Now it has finished




89

SNAPSHOT 9

SUMMARY

The new control procedure is
" "NAME OF PROCEDURE INPUT
STOP 7 o none

So the first INSOMNIA can
continue on its line 40 to

print

4
ACROSS

Now it has finished as well,

EFFECT

" stops procedure

it is in.

P



90
26. TRACING PROCEDURES
R e e e rnd

There is a procedure named
TRACE

which can be used to help you debug and understand your procedures,
It needs one input which should be the quoted name of a procedure to

be traced, or a list of names of procedures to be traced.

‘EXERCESE l: Recall and show the INSOMNIA procedure
' ' frgﬁ,note 25, -
Run TRACE as follows
i: TRACE "INSOMNIA

The message means that -INSOMNIA has been MARKED so that, in'the futureg
every time it is executed a message will be typed by 1060, This

message will tell you that

(a) the procedure has been calied

(b) what the values of its inputs are

When a MARKED procedure finishes another message is typed. - This tells

you

(a) what the result of the procedure is, if any

{(b) that the procedure has finished.
EXERCISE 2: Run iNSOMNIA with various inputs.

You can TRACE LOGO's procedures as well as your own.

EXERCISE 3: . MARK LOGO's procedure ADD for

tracing

W: TRACE "ADD

Now run INSOMNIA again.

Also try .

W: PRINT ADD ADD ADD 1 2 4 8



91

In chapter 25 a series of shapshots of INSOMNIA 4 being executed was

drawn, Here we show the messages produced by TRACING INSOMNIA 4.

Comments

LOGO Messages

u

u

| W: INSOMNIA 4
|

W:

INSOMNIA called S INSOMNI A
name and value of imput YAWN = 4,
10 : - {- SHEEP
effects of PRINT = — 2 e . . _ __ «&I SHEEP
SHEEP
: i SHEEP
20 [JUMPED OVER THE FENCE]
i
i .
30 : -y INSOMNIA called i _>INSOMNIA
L - —
name and valoe of inputar YAWN = 5,
10 | SHEEp
SHEEP
effects of PRINT — — 3 4 SHEEP
.I SHEEP
SHEEP
20 | [JUMPED OVER THE FENCE]
300 .1 - INSOMNIA calied
— e e el l“_ T > INSOMNIA
fname and value YAWN = 6
of input ! !
55 no result NO RESULT
. INSOMNIA ended T~ — = — = <INSOMNIA
40 s
150 effects of PRINT -~ - m-——>i ACROSS
no result produced NO RESULT
. e
INSOMNIA ended i “<INSOMNIA
40 leffects of PRINT _ — e v = e L l LA
50 ! ACROSS
5 NO RESULT
no result produced <TNSOMNIA
INSOMNIA ended |



62

Each call to a sub-procedure is shown by the > moving two spaces to the

right.

EXERCISE 4: Turn the diagram on the previous page on its
side. The sub-procedures look iike NESTED

tables:

‘super procedure

!
g sub procedure

"sub sub procedure

L -

R

§

T
D

b

LOGO can also be commanded to remove the MARK from a procedure by

running the‘procédure
| UNTRACE

which needs a single imput, either a quoted name or a list of names.

EXERCISE 5: Try
W: UNTRACE [ADD INSOMNIAI
and run INSOMNIA

SUMMARY
The new procedures are:
NAME OF PROCEDURE INPUT
TRACE ,  1list of procedure names

or single quoted

procedure name

UNTRACE list of procedure names
or single quoted

procedure name

EFFECT

marks named procedures so
that messzage given when
/

tliey are executed

removes mark from named

procedures.







93

27. HOW LISTS WORK

A list is like a stack of boxes on a pallet

|
F: o
e s ) )

There is a LOGO procedure named

FIRST

which gives as its RESULT the top box, or first element of the list which

is its input.

EXERCISE 1: Try typing
W: PRINT FIRST [THE CAT SAT ON THE MAT]
W: PRINT FIRST [SAT CAT ON THE.MAT]
W: PRINT FIRST {CATI]

You can PUT a box onto the top of the stack by running the LOGO procedure
PUT

which gives the whole of the mew stack or list as its result. PUT needs
two inputs, the first input is the new box, the second input is the stack

it is to be put om.




94

EXERCISE 2: Try typing

W: PRINT PUT "CAT IDOG RABBITI

W: PRINT PUT 10 [9 8 7 6 5 4 3 2 11

W: PRINTPUT [9 87 65 432 11 10
W: PRINT PUT FIRST [PEA BEAN] [POTATO CARROT]
EET) et b

[evere artet]

You can also knock off and throw away the tbp box by running the procedure
REST
which gives as its RESULT the rest of the stack.

EXERCISE 3: Try typing
W: PRINT REST [THE CAT SAT ON THE MATI
W: PRINT REST [10 9 87 6 5 4 3 2 1]
W: PRINT FIRST REST [THE CAT SAT ON THE MAT]

EXERCISE 4: Make a procedure named SECOND which takes as its
input a list. The result of SECOND should be

the second element of the list,

EXERCISE 5: Make a procedure named THIRD whose result

is the third element of a Ilist.

EXERCISE 6: Try typing
' W: PRINT THIRD [CAT DOG]




95

FIRST, REST and PUT all work with auwmbers and words too

EXERCISE 7:

Try typing

W: PRINT FIRST 783

W: PRINT REST "ELEPHANT
W: PRINT PUT 5 94321

The new procedures are:-

NAME OF PROCEDURE

FIRST

REST

PUT

SUMMARY
INPUT EFFECT
List The first element of the list
Word The first letter of the word
Number The fivst digit in the number
List, word or The rest of the list word or
number number
Two inputs Puts first input in front of

nunbers, words second. Except lists cannot
or lists be put in front of words or
numbers., (Can't put pallets

on boxes.)







96

28, FINDING THINGS IN LISTS

We use lists for storing several names or numbers. For example this is .

a list of names
FGONALD  MARY HAMISH FERGUS  FIONA ANDREW]

People can easily tell that the name FERGUS is somewhere in this list by

looking at it. But in LOGO a list is like a stack of bhoxes on a pallet,

1
L

¥

Imagine there was a name on a piece cf paper in each box and we wanted

to find ocut whether cme of the names was FERGUS.
There would be three jobs to do:-

Job 1. : If there ave no boxes ieft on the'pallet then séy FERGUS

cannot be found and stop searching.

Job 2. : If the name FERGUS is in the tap. box then say FERGUS has

been found and stop searching.

Job 3. : Throw away the top box and search the rest of the boxes on

the pallet.

This is another example of RECURSION,



EXERCISE 1:

Joh 1

Job 2

Job 3

EXERCISE 2:

EXERCISE 3:

97

Define this procedure which carries out the three jobs

W: DEFINE "SEARCH BOXES
D: 10 IF EMPTYQ VALUE "BOXES THEN PRINT [NOT FOUNDI
D: 20 IF EMPTYQ VALUE "BOXES THEN STOP
D: 30 IF EQUALQ "FERGUS (FIRST VALUE "BOXES) THEN PRINT [FOUND]
D: 40 IF EQUALQ "FERGUS (FIRST VALUE “BOXES) THEN STOP
D: 50 SEARCH REST VALUE “"BOXES
D: END '

Try SEARCH with different inputs

e.g.

N::SEARCH [DONALD MARY HAMISH FERGUS FIONA ANDREW]
W: SEARCH [DONALD MARY HAMISH FIONA ANDREW]

W: SEARCH [1 2 3 FERGUS 4 5]

W: SEARCH [1 2 FERGIS 3 4 51

Mark SEARCH for tracing and run it again

SEARCH is a recursive procedure. Each SEARCH worker looks in the top box

of the stack he is given and then calls on another SEARCH worker to loock

in the rest of the boxes

'EXERCISE 4

Define a procédure like SEARCH which has an
extrainput. The value of this imput will
be the element té be looked for in the list.

This procedure could look for anything, not

just "FERGUS.

If this procedure were called FIND it would
be run like this:~ '

W: FIND "HAMISH [DONALD MARY HAMISH FERGUS]
[FOUNDI |

W:

FIRST and REST also work with words and numbers as well as lists. So we

could find a digit in a number or a letter in a word.




28

EXERCISE 5: - Try
' W: FIND "B "ABCDEFGH
W: FIND 6 12345

EXERCISE 6: Mark EiND for tracing and run it again.

FIND and SEARCH give no ;ésult. They only have the effect of printing
[FOUNDI or [NOT FOUNDI. = '

SUMMARY

Recursive procedures can be used to find out what elements there are in

a list.







99

29. COMING BACK OUT OF RECURSION

In note 28 procedures FIND and SEARCH were defined which gave no result.
They only had the effect of printing [FOUNDI or [NOT FOUND]. A more
useful version of FIND would give the result "TRUE or "FALSE. Tt would
then be a question procedure and could be used with the control procedure

- IF.

EXERCISE 1: Define this mew version of FIND named
"MEMBERQ which does the same three jobs
as FID.
W: DEFINE "MEMBERQ "THING “BOXES
D: 10;IF EMPTYQ VALUE "BOXES THEN RESULT ~FALSE
£ © Dt 20 IF EQUALQ (VALUE "THING) (FIRST VALUE "BOXES) THEN RESULT "TRUE
' D: 30 RESULT MEMBERQ VALUE "THING REST VALUE "BOXES
D:-END '
Try out MEMBERQ e.g.

W: PRINT MEMBERQ "CAT EDOG CAT RABBITI]
W: PRINT MEMBERQ@ “"CAT [DOG RABBIT ZEBRA LION]

MEMBERQ can combine lines 10 and 20 of FIND because RESULT gives a result
and stops the procedure. Lines 30 and 40 of FIND can be combined for the

same reason.

In line 30, MEMBERG is called as a sub—-procedure. The RESULT on this line
ensures that the result of the MEMBERQrsub—procedure becomes the result of

the MEMBERQ super-procedure.

EXERCISE 2: Trace MEMBERQ and run it again
Try MEMBERQ on a word or number e.g.
W: PRINT MEMBERQ “T “ROOM

Compare the trace of
4z PRINT MEMBERQ "CAT [DOG PIG. CAT]

with the next diagfam@-



100
“CAT IDDE PIG CATI line 10: [DOG PIG CAT] is not empty

needed so call a
MEMBERQ sub"proce&ure
‘ and give it ?CAT and
fg@ RESULT MEM3ERG VALUE " THING REST VALUE "BOXES [Pi& CATI as inputs.

SNAPSHOT 1

line 10: [PIG CAT] is mnot empty .é.

line 20: "CAT is not equal to "PIG

CCAT [PIG CATI

et neaded so call a
5 ér”’/’/,// MEMBERQ sub- srocedure

and give 1t "CAT and

fCAT] as inputs

SNAPSHOT 2

) "rAT [CATI line 10: [CAT] is not empty
d line 20.: "CAT is equal to “CAT

8o give result "TRUE

which stops the procedure.

BUALG (VALUE ' THING) (FLRST VALUE "20XES)
ENIREAULT “TRUE

30) RESULT | 30

SNAPSHOT 3

. line 20: "CAT is not equal to "DOG
BOKES line 30: the input to RESULT is :

line 30: the input to RESULT is -~ |



101

line 30: RESULT now has its

input and can stop
the procedure with

the result "TRUE.

SNAPSHOT 4
| — line 30: RESULT now has its
= input and can stop
the procedures with
<471
1 the result "TRUE,
FESITT. «— “TaUE
SNAPSHOT 5

EXERCISE 3: Using MEMBERQ as a sub-procedure define a procedure
which expects a single letter as the value of its
input, The procedure should print either "VOWEL

or ""CONSONANT deﬁending on the input letter value.

You can compare the way MEMBERG comes out of recursion with the following

procedure named CHOP.

W: DEFINE "CHOP "BOXES
- D: 1C PRINT VALUE "BOXES
D: 20 IF EMPTYQ VALUE "BOXES THEN STOP
D: 30 CHOP REST VALUE "BOXES
bz END
EXERCISE 4: Define CHOP and run it with different inputs
.,
W: CHOP [COMING OUT OF RECURSIONI
W: CHOP “ABCDEFG




1062

EXERCISE 5: Change CHOP by inserting a line 40
D: 40 PRINT VALUE “BOXES
Try to predict how this version of CHOP

will work,

Try cut CHOP.

CHOP works in much the same way as INSOMNIA which is described in note 26

and note 25,

SUMMARY

MEMBERQ is an example of a procedure which is recursive and gives g
result. MEMBERQ can search down a list and send 3 result back depending

on what it finds,




103

30.  WORKING ON LISTS

You can write a procedure which counts how many elements there are in a
list, This procedure is similar to MEMBERQ but has an overall result

which is the number of elements in the list.

The stages in counting elements inm a list, or boxes on a pallet, are

as follows:—

Job 1: 1f the pallet is empty the total is @.
Job 2: Throw away the tob-box and add 1 to the total from

counting the rest of the boxes.

EXERCISE 1:- Defina'the;followingltounting procedure
o '}: DEFINE "TALLY “"BOXES

Job 1: . Dz 10 IF EMPTYQ VALUE "BOXES THEN RESULT @
Job 2: D: 20 RESULT ADD 1 (TALLY REST VALUE “BOXES)
o D: END -

Try out TALLY with some liSts}. Also try it

with a ﬁord and a number.
EXERCISE 2: Trace TALLY  aid~ see how it runs.

The snapshots on the next page show the command

W: PRINT TALLY [47 33]
2

being executed. Many of the procedures are not shown in the snapshots

which concentrate oh TALLY.



104

line 10: [47 331 is not empty

... line 20: In order to give the
B result of adding 1 to

. , the total. the: rest of

"BOXES) - © . . the boxes musf;ﬁe

. tallied. .Call a .

" SNAPSHOT 1 . TALLY sub—procedpre. : i

line 10: [33] is not empty =~ '§

i liney20 In order to give the _
- _result of addlng 1 to “é
N -the total the rest of ‘ K
(Z0)RESPLT ADD 1 (TALLY REST VALUE “B0XES)  the boxes must be

;tallied. Call.a ‘
. TALLY sub Sub"procedure

line 10: [ ] is empty so give

the result ¢

Now line 20 can be completed

"ADD 1 @ comes to 1,

50 give the result 1.

SNAPSHOT 4

ow line 20 can be completed

ADD 1 1 comes to 2,

S0 give the result 2.

1SPLT ADD 1 1

SNAPSHOT 5




105

You can write a very similar procedurerto TALLY which adds up a list of
numbers (like on a shopping bill). This procédure could be named TOTAL.
Instead of adding 1 each time as TALLY does, it would add the first
number in the list to the total.

EXERCISE 3: Define a procedure TOTAL which adds up

a list of numbers. Try it out.

EXERCISE 4: Define a éuper—procedure AVERAGE which
' uses TALLY and TOTAL as sub~procedures
to ‘calculate the average of a list of

numbers. -,

s
i

EXERCISE 5: Define a procedure named MANY which works
like TOTAL but which multiplies togetﬁér
all the numbers in a list. ‘
For example: How many seconds in arday?'
Wi PRINT MANY [60 60 241

"The procedure would work out 60X60x24.

SUMMARY

As well as finding out what elements are in a list, you can also work

with the elements of a list using rvecursion.







AN i ¢

106

31. CONSTRUCTING LISTS

You can define a procedure which constructs a list and gives this list
as its result. This note uses this kind of procedure to show you how

to make secret codes

‘ =¢3w
[SVOOL UIRVMN]é?"}fiT

The input to . CODE.' is a list of words.  CODE will constg?

- [HELLO FRIEND]

_;.'3

a.g{:

t a new

list of ' coded ' words using procedure PUT to make the list.

One of the sub—jobs is to code each separate letter. Here is an example

of a procedure for coding letters. o . L _ e e T

.~ W: DEFINE "ELIP “LETTER

D: 10 IF EQUALQ VALUE "LETTER “A THEN RESULT °2
D: 20 IF EQUALQ VALUE "LETTER "B THEN RESULT “Y
D: 30 IF EQUALQ VALUE "LETTER "C THEN RESULT "X

D: 260 IF EQUALQ VALUE "LETTER "2 THEN RESULT “A&
D: END ’

(We have left out ‘some Iines)

EXERCISE 1: Define this procedure or your own procedure

‘which encodes individual letters.

Try this procedure ocut
e.g.

W: PRINT FLIP "j

W: PRINT FLIP 7



107

Complete words can be coded by procedure SCRAMBLE. It will use FLIP

as a sub-procedure. There are two jobs to do.

Job 1: If there are no more letters in the word to be coded then

the result is the empty word

“Job 2: Otherw1se PUT the fllpped first letter of the word at the

beginning of the serambled rest of the word.

W: DEFINE "SCRAMBLE “WORD
D: 10 IF EMPTYQ VALUE "WORD THEN RESULT °
D: 20 RESULT PUT (FLIP FIRST VALUE "WORD) (SCRAMBLE REST VALUE "WORD)
D: END ‘

EXERCISE 2Z: Define SCRAMBLE and run it with various words '
e.g. '

W: PRINT SCRAMBLE "LOGO

The following snapshots show some of the procedures called in executing

W: PRINT SCRAMBLE “IT

EXERCISE 3

Tew

Type
W: TRACE [SCRAMBLE FLIP PUT]

Compare the trace with the diagrams.




=

108

line 10: "iT%is not empty

line 20: My tasult will be a
new word made with
PUT. - Call FLIP to
change "I to "R.
Call SCRAMBLE as a
sub-procedure to deal
with the rest of the
word :

SNAPSHOT 1

line 10: T is not empty

line 20: My result will be a
new word made with
PUT. Call FLIP to
change T to "G.
Call SCRAMBLE as a

‘i _ o sub—sub-procedure.

tBJULT PUT. "5 (SCRAMELE") _ to deal with the

' ' ) rest of the word.

£
e

SNAPSHOT 2 .

line 10: " is empty so
give the result
n

HORD THENRESULT"

. Now PUT can make a néw'word‘
out eof "G and’" . This
word is "G. I can now give
"G as my result.

SNAPSHOT 4

Now PUT can make a new word
out of "R and "G. This
word is "RG. I can now
give "RG as my result .,

RESULT PUT "R "G

SNAPSHOT 5

o
i
o




i09

'"The Story of the three SCRAMBLES!

In the example, three procedures named SCRAMBLE were called.  Let us call

them super—SCRAMBLE, sub-SCRAMBLE and sub—sub—SCRAMBLE

/I can deal with my top box but \
I have no where to put it until . ¥
k%_w my sub—SCRAMBLE finishes. ;

I can deal with my top box but
» I have no where to put in until
\ my sub—sub-SCRAMBLE finishes.

) can deal with my:stack because
b it is empty. ‘Here's an empty
' stack for you sub-SCRAMBLE.

A

can oW put my new bex on that
empty stack. Here's a new stack

' Thank you sub~sub-SCRAMBLE. T1° Et:)
7. for you super—SCRAMBLE.

Thank you sub-SCRAMELE. I can
now put ®my new box on that stack.
. Here's a naw stack for you PRINT.

ot o e



iio

EXERCISE 3: Define a procedure CODE which uses SCRAMBLE
as a sub*procedurea CODE should encode a
whole list of words

e.g.
W: PRINT CODE L[THE CAT SAT ON THE MAT]

This proceduie will do. two jobs very much like CODE.

Job 1: If there are no more words in the list then the result
_ ‘ is the emply list.
Job 2:  Otherwise PUT the scrambled first word of the list at the

beginning of the CODED rest of the list.

SUMMARY

A procedure can construct a list using PUT and recursion. Each CODE
called can only put its new list together when it has the new element

and the new list to put it in.






111

32. VARTABLES

EXERCISE 1: Definej?he following procedure
W: DEFINE "TRIPLE "NUM
D: 10 PRINT MULTiPLY VALUE "NUM 3
D: END

Run the procedure
W: TRIPLE 7 . -

EXERCISE 2: Try typing thé following
W2 PRINT VALUE "NUM

When you ran the procedure TRIPLE it had an input callediUMw&iéh had
the value 7. This value is PRIVATE to that worker TRIPLE, The
procedure VALUE can only get the 7 out of NUMwhen VALUE is calléed
inside the worker TRIPLE. |



112

EXERCISE 33 Define the following procedure
W: DEFINE "QUAD “NUM
D: 10 PRINT MULTIPLY VALUE "DIGIT 4
D: END
Run the procedure
e.g..
W: QUAD 12

QUAD did not work because when LOGO tried to execute VALUE "DIGIT no

input of that name could be found.

e

An input is a type of VARIABLE. A VARIABLE has a name and a vﬁiué.

A variable is like a box with a name on 1t. Inside the box can be a

word, number or list.

There is a way in LOGO of making PUBLIC boxes or variables that any

worker can look into.

Thereris a LOGO procedure named

MAKE
which creates LOGO boxes., ' It ﬁEEds two inputs. The first input is
a LOGO word to be the name of the new box. The second input is to be

the value or contents of the snew box




EXERCISE 4: Create some new boxes '

W: MAKE "NUMBER 10101
W: MAKE "SEASONS .[SUMMER WINTER SPRING AUTUMNI
W: MAKE “JAM “STRAWBERRY
W: MAKE "DIGIT 19

“NUMBER " SEASONS

10101 [ SUMMER WINTER SPRING AUTUMN

" JAM “BIGIT

"STRAWBERRY T

We use the pfoce&ure VALUE to find out what is in a box.

EXERCISE 5: = Look inside your new boxes

e.g.
W: PRINT VALUE "NUMBER

EXERCISE 6: Run your procedure QUAD again

e.g.
“W: QUAD 10000

. When inside the procedure QUAD. LOGO tried to execute VALUE "DIGIT,

it first locked for an input (a ﬁRIVATE box) named “DIGIT,
could not find one it then looked for a PUBLIC variable named "DIGIT.

It found the cne vou made in ExercﬂSe 4,

As well as making new boxes, the'procedure MAKE can also be used for

changing the contents of a box which already exists,

When it



114

EXERCISE 7:  Try the following changes to the value

of “BIGIT.

W: MAKE "DIGIT 2

=

SUMMARY

MAKE "DIGIT ADD 5 6
PRINT VALUE "DIGIT

There are two sorts of variables PRIVATE (inputs) and PUBLIC ones.

PRIVATE variabies only have values when the worker they belong to is

being executed.

PUBLIC variables éxe stored in the working memory separately from
procedures. Once a PUBLIC wariagble has been made the box stayéﬂ

working memory until you type GOODBYE.

The new LOGO procedure is

NAME OF PROCEDURE INPUT
MAKE A word and one of
a word
a number
a list

EFFECT

Creates a box in working memory
whose name is the value of the
first input and whose content

is the value of the second input.-




115

33. USING PUBLIC BOXES

Here is a procedure for a guessing game you can try on your friends.

EXERCISE 1:

EXERCISE 2:

Define this procedure

W: DEFINE "GAME _
© D:.10 PRINT {TRY TO GUESS THE NUMBER] o
D: 20 IF EQUALQ (FIRST REPLY) (VALUE “SECRET) THEN +
C: PRINT [WELL DONE] ELSE GAME
D: END '

 Put a value in "SECRET and then ask a friend

to run GAME.

You chose the number to go in "SECRET. But LOGO can choose numbers for

itself. There fs a procedure named

RANDOM

which needs one number as input, RANDOM gives a result which is a

randomly chosen number between the input and zero.

EXERCISE 3:

- Try out RANDOM a few times

e.g.

W: PRINT RANDOM 10
W: PRINT RANDOM 10
W: PRINT RANDOM 10

" W: PRINT RANDOM 237

Now you can play GAME yourself by letting LOGO choose the number to go

in "SECRET.




EXERCISE 4:

1ié

Put a random number in “SECRET
W: MAKE “SECRET RANDOM 10

Now run GAME and find out yourself what

- - number LOGO chose.

You can move the turtle in a random way as well.

EXERCISE 5:

- Try defining and running this procedure
M: DEFINE "DRUNK

D: 10 FORNARD RANDOM 50

D: 20 LEFT RANDOM 360

D: 39 DRUNK

D: END

Here is a guessing game which gives hints as it runs.

EXERCISE 6:

W: DEFINE "GUESSER } o
D: 10 PRINT {CAN YOU GUESS THE:NdMBER]
D: 20 MAKE "ANSWER FIRST REPLY
D: 30 IF GREATERQ VALUE "ANSWER VALUE "SECRET +

C: THEN PRINT. [T0O BI6I

D: 40 IF LESSQ VALUE “ANSWER’ VALUE "SECRET +
C: THEN PRINT [TCO SMALLI

D: 50 IF EQUALG VALUE “ANSWER VALUE “'SECRET
C: THEN PRINT [WELL DONE] ELSE GUESSER

p: END -

«««««

Don't forget to put a value in the public
box "SECRET which each GUESSER will need

to look in.

In line 20 we stored the guess in a public box named " ANSWER .

This was because we needed to use this guess in both lines 30 and 40.

If we had used REPLY twice, LOGO would have waited for two different

guesses, one on line 30 and cne on line 40.




SUMMARY

MAKE can be used for storing values which can only be worked out once,
but which we need to be used several times, or locked at by several

procedures,
The new procedure is:-—

NAME OF PROCEDURE INPUT RESULT

RANDOM number a randomly chosen number

between ¢ and the input.







118

APPENDIX A, PRINTING

The procedure PRINT types its inputHEt the teletype and then moves the

teletype carriage ready for a new line.
1f you want to type several” things on the same line you can run a
procedure named '
TYPESET
This procedure needs one input which can be a number, word, or list.

- This input is used to build the line to be typed_

For example if you type

W: TYPESET [THIS IS PAGE]
W: TYPESET 118
W: TYPESET [OF THE PRIMER]

Thus a line consisting of [THIS IS PAGE] 118 [OF THE PRIMER] will be
built. Thls line will not be typed 4t the teletype until you build a
carriage movement into the line.
There is a new procedure named

CARRIAGE
which needs no input, Once this procedure is run any iihe which has beei
‘built is typed at the teletype, and the carriage moved to the next line.
There is also a procedure named

SPACE

which will bu11d a 51ng1e space character 1nto a l:l_ne° It needs no input.

e

There is a procedure named
TAB
which will build a tab of six spaces into a line. It needs no input.
There is a procedure named
SAY

which works in a way very similar to PRINT. It needs one input which

can be a number, Word or list. The input is typed at the teletype and



119

the carriage moved. However if the input is a list the list brackets

[ 1 are not typed

E.g. ‘ . .
W: SAY [GOODBYE FREDI

GOODBYE FRED
We

There is also a new procedure named

TYPE

which works in just the same'way as TYPESET except that a space i1s .also

inserted before the thing to be typed
E.g. ‘

W: TYPE "FRED

W: TYPE "SMITH

W: CARRIAGE

will have the effect of typing

FRED SMITH
SUMMARY
The new procedures are
NAME OF PROCEDURE INPUT
TYPESET number, word or 1ist
CARRIAGE no input
SPACE ‘ no input
TAB no input
SAY number, word or list
TYPE number, word or list

builds
causes
builds.

builds

as for

EFFECTS
input into line
line to be typed
space intc line .

six. spaces into line

PRINT but lists typed

without brackets

as for

also

TYPESET but a space
typed in front of

input.

H




10

APPENDIX B. MORE ABOUT DRAWING CIRCLES

The procedure ARC draws part of a circle curving tec the left. There is

a procedure which draws cireles curving to the right. It is named
ARCRIGHT

Like ARC it has two inputs. ' The first input is the radius of the circle.
The secend input is the amount the turtle turns in moving round the arec

{so 360 degrees gives a whole circle).

SUMMARY
The new precedure 1s 5?
NAME OF PROCEDURE *INPUT EFFECT

ARCRIGHT 2 numbers an arc is drawn.






121

APPENDIX C, THE TURTLE STATE

gw”:{-axiﬁ

gw% A fioc 296 Go Dowsl)

G

i ‘s ? ¥ - SR A ]
~580  &eb  -3B0 =203 ojou . 0D, ao 60 X—-@Lis&c
w i o
= Foys L

-3a0 L

~f9o L -

Ay

e
=%8e fﬁ
The turtle state is a list of four elementé:"

[the x coordinate, the y coordinéte, the heading, the penstatel

There is a procedure named
STATE

whose result is the statg of the turtie. It needs mno inputgu You
already'know how to change the turtle state :
E.g. |

W: PRINT STATE

L7100 200 90 DOWNI]

W: LIFT

W: PRINT STATE

{100 200 90 uPl

W: FORWARD 30

Wz PRINT STATE

[10C 230 90 UP]

W: LEFT 15

Wi PRINT STATE

[100 230 105 yP]



122

We can JUMP the turtle to change its state.

There is a procedure named
PGSITION

which needs one input. This is a list of the new desired turtie state.
The turtle will jump to the new position without leaving a line

W: POSITION E400° 200 180 DOWN
It is also pcssible to just jump the turtle along the x axis oy the y axis,
There is a procedure named .

SETX

which needs one number input. The turtle will jump aiong the x axis

so that this input becomes its mew x coordinate.

W: SETX —-100
W: PRINT STATE
[-100 200 180 DCWNI

There 1is a gimilar procedure named
SETY

You can also set the turtle heading to a particular value y running a

procedure named
SETHEADING

This procedure needs one number input. In LOGO the turtle always starts

at zero degrees which is along the x axis.

£ A0°

- hee;da;ﬁ
- o

\\/ 2—; Dc s

Rotating to the left increases the heading




123

You can find out individuai elements in the turtle state.

There are procedures named

XCOR
) YCOR
HEADING -
PEN_
which need no input.
E.g.
W: PRINT HEADING
105
W: PRINT PEN
up
SUMMARY

~ The turtle state can be changed without leaving a line. You can also find

out what the turtle statre is.

The new procedures are

NAME OF PRCCEDURE X INPUTS "RESULT
POSITION list of new turtle state none
SETX number - new x coordinate - | none
SETY number ~ new y coordinate none
SETHEADING number —new heading nore
STATE none listbfturtlestate
XCOR none - current x gqordinatg
YCOR _ none current y coor&ina;%
HEADING none ; current headigg

PEN none current pen state

Jumps
jumps
jumps

Jumps

EFFECT
to new state
along x axis
along y axis
to new heading
none
none
none
none

norie






124

APPENDIX D. THE LOGO CLOCK

s

LOGO has a clock which ticks in seconds. AThe clock starts at zero at; the

beginning of the session,

There 1s a procedure named

'

TIME

which needs no inputs. Its result is the fime_siQCe the start of the

5ession.

You can reset the clock to zero at any ﬁoment Bfiruﬁning a procedure ?amed
RESET .

which needs no input,

- One of the ways you can use the clock is to time how long it takes someone

to reply in one of your quiz’ procedures.
For example

W: DEFINE "TIMER ‘
D: 10 PRINT [HOW MANY PEOPLE LIVE IN EDINBURGH]
D: 20 RESET R
D: 30 IF EQUALQ REPLY [4932817 THEN
~ PRINT [EXCELLENT] ELSE PRINT [WRONG AGAINI
D: 40 PRINT LYOU TOOK] | '
D: 50 PRINT TIME
D: 60 PRINT "SECONDS
D: END

SUMMARY
The new procedures are
NAME OF PROCEDURE INPUT - EFFECT
TIME ' none giVés'time in seconds since

start of session

RESET o  none resets LOGO's clock to zero







- 125

APPENDIX E. PAPER TAPE

There is another device you can use. it is a paper tape punch. To

connect yourself to the paper tape punch run the procedure named
TAPE
This procedure needs no inputs.

You can have blank tape run out of the punch by running the procedure
named

éUNOUT
This procedure needs mno input.
You cap punch holes in the paper tape by running the procedure named
PUNCH

This procedure has“one input which must be a number between O and 255.

g Cco_ (]
(B e B o]
o 0 o -
0 ¢ ) -
¢ 0 Q
..... emoownsnnaewalsossuoeouc-ﬂleaeen-noonﬂ- "2 CH 0B 0OR OO0 TR SO0 0D E N A Dy
4;.: o0
o ]
Q O

7
:
3
>
LN
e
4
3
>
¥

R e e

RUNOUTVJ?

PUNCH 255

PUNCH 0 ——’

PUNCH 255 ——emacnd

; ‘ ji>
)
_ 00 '

: ' ' sprocket holes

= =

0w

'
Y
c
=
L]
=X
.Y

)
[
=
&
=
£~

E X X 5 € £ I £ £ ¥ =
o
=
=
3
pm
[o5]

Ny

PUNCH 16 J
PUNCH 32 4
PUNCH 64 4
PUNCH 128 J
PUNCH 129 /




126

There are eight places across the tape where holes may be punched.
This is like a binary number of eight digits. A hole corresponds to

the digit 1. A blank corresponds to the digit_@.

Thus 255 (decimal) corresponds to 11111111 (binary) which corresponds to

on the tape.

To punch a particular pattern of holes you must first translate the
pattern in to a binary number. Then you must translate the binary

number into a decimal number as input for procedure PUNCH

o 2 128
& 2.7 T £
iy 2 22
» 2 3 i
2 8

2
= 2 T i
20 = i

The letter R can be produced by ruining procedure PUNCH four times.

"l

TN binary | decimal LOGO
g { 11111111 > 128 +64 +32 +16 +8 +4 +2 +1 + 255  W: PUNCH 255
\ 19011900 > 128 + 0 + 0 +16 +8 +0 +0 +0 > 152 Wz PUNCH 152
00, 00ld/ 510010100 + 128 + 0 + 0 +16 +0 +4 40 +0 > 148 Uz PUNCH 148
500832000 01100011 + 0 +64 +32 + 0 +0 +0 +2 +1 > 99  W: PUNCH 99

Y

SUMMARY
The new proéedures are
NAME OF PROCEDURE INPUTS ‘ EFFECT
TAPE none connects to tape punch
RUKOUT nome . produces some blank tape
PUNCH number between punches pattern of holes.
% and 255

inclusive




127

APPENDIX F. AN ABBREVIATION FOR VALUE

To save space in lines of LOGO you can abbreviate as follows:—

{a) W2 PRINT VALUE "FRED
can bejabbreviated to

“W: PRINT :FRED
(b) or:the SPIRAL procedure from Chapter 21.

W: DEFINE "SPIRAL "AMNGLE "SIDE "STEP

: 10 FORWARD VALUE "SIDE

: 20 RIGHT VALUE "ANGLE

: 30 SPIRAL (VALUE "ANGLE) (ADD VALUE "STEP +
: VALUE “"SIDE) VALUE "STEP

D: END

L3 B v B e S e ]

could be written as

W: DEFINE "SPIRAL "ANGLE "SIDE "STEP
D: 10 FORWARD :SIDE
D: 20 RIGHT :ANGLE
D: 30 SPIRAL :ANGLE (ADD :STEP :SIDE) :STEP
D: END '

T Note that there is no space typed between the : and the name.

SUMMARY

VALUE " may be abbreviated to



: s ; ; . . i : E | . s . - B
- FU— E - [ B . « 8 [ PR RO S psanid RIR—— RS T —
)



128

APPENDIX G. MORE ABQUT DEFINING PROCEDURES

If you use a particular procedure often you may wish to give it a

shorter name. To de this you run the procedure named
ABBREVIATE

This needs two inputs. The first is the name of the procedure to be

abbreviated. The second is the new abbreviated name e.g.
W: ABBREVIATE "ELEPHANT “LUMP

Now the procedure ELEPHANT can be run either by using the name ELEPHANT
or the name LUMP. If you want to use this abbreviated name at another

session you will havé to REMEMBER the abbreviated procedure, e.g.
W: REMEMBER "LUMP

If you want to make more space between the lines of a procedure you

would like to change you can use the procedure named
REWUMBER
This needs one input, the name of the procedure to be tenumbered, e.g.

i RENUMQER " LUMP

This would have tﬁe effect of renumbering the lines of LUMP in tens

(i.e. 10, 20, 30, 40, ...) but keeping the order the same.

SUMMARY
The new procedures are
NAME OF PROCEDURE INPUTS o EFFECT
ABBREVIATE two quoted words the second word becomes an
alternative name for the
procedure 'named with the
first word.
RENUMBER one quoted word the lines cof the procedure

named are renumbered in tens.



e . . . SR




129

APPENDIX H. GLUEING THINGS TOGETHER

Two words or numbers can be glued together to make larger words or

numbers., The procedure that does this is named
WORD
and needs two inputs, e.g.

W: PRINT WORD "CAT "DOG

CATDOG
W: PRINT WORD "123 345
123345
W: PRINT WORD -"CAT "123
CAT123

Two lists can be made into one list by using the procedure named:
JOIN

This works as follows

W: PRINT JOIN [HOW AREILYOU TODAY1
[HOW ARE YOU TODAY]

A list can be made by using the procedure named
LIST
This takes two inputs, either of which may be a word list or number, e.g.

W: PRINT LIST "CAT "DOG
[CAT DOG] N _
W: PRINT LIST [THE CAT SAT ON THE MAT] 7
[ L[THE CAT SAT ON THE MATI 71

Note that lists can have lists as elements.



The new procedures are
NAME OF PROCEDURE
WORD

JOIN

LIST

130

SUMMARY

INPUTS

two words or numbers

two lists

two words, numbers

or lists.

RESULT

inputs are glued together
into arlarger word oy

number

the lists are joined

to make & single list

a new ligt is made
using the inputs as

elements.




131

BOTH and EITHER

APPENDIX I,

The results of two question procedures can be combined. This is
useful if you want the control procedure IF to work on the results

of two question procedures, e.g. in English:

if both a sunny day and school holiday <fhen go swimming.

if either hungry or thirsty

look in fridge..

The inputs for BOTH and FITHER must be the words "TRUE or “FALSE.

Try typing

W: PRINT BOTH "TRUE "TRUE
W: PRINT BOTH "TRUE "FALSE
W: PRINT BOTH "FALSE "TRUE
: PRINT BOTH "FALSE "FALSE
W: PRINT EITHER “TRUE "TRUE
: PRINT EITHER “TRUE "FALSE
W: PRINT EITHER "FALSE "TRUE
: PRINT EITHER “FALSE “FALSE
result inzuts
“TRUE - «~—— BOTH  }e—a-"TRUE "TRUE
"FALSE - BOTH |«-—— "TRUE "FALSE
. _+ e et e e |
"FALSE <« BOTH  |+-—~ "FALSE "TRUE
"FALSE BOTH |¢——"FALSE "FALSE
“TRUE < EITHER ii::#{TRUE “TRUE
"TRUE < ﬂEiIHER_ +=——"TRUE "FALSE
"TRUE « EITHER [«——FALSE "JRUE
"EALSE < (EITHER |«———"FALSE "FALSE




132

-

The words "TRUE and "FALSE would normally be the result of running the

question procedures.

SUMMARY
The new procedures are:
NAME OF PROCEDURE INPUTS - RESULT
BOTH ’ two words - _ the word
“TRUE or " FALSE “TRUE or "FALSE
EITHER two words " the word

"TRUE or "FALSE "TRUE or "FALSE




133

APPENDIX J. THE END OF THE LIST

Thefe are a number of procedures for working on the last element of a
list (or bottom box of a stack). One of these is like FIRST and is
named

LAST
E.g.

W: PRINT LAST [THE CAT SAT ON THE MAT]
MAT

Another is like REST and is named
BUTLAST
Therresdlt of this procedure is all-but~the-last.

/

E.g. 7

W: PRINT BUTLAST [THE CAT SAT ON THE MATI
[THE CAT SAT ON THEI

Another is like PUT and is named

LASTPUT

W: PRINT LASTPUT “pOG LTHE CAT SAT ON.THE]
[THE CAT SAT ON THE DOG]

LAST: BUTLAST and LASTPUT all work on words and numbers as well, in the
same way that FIRST. REST and PUT do.



NAME OF PROCEDURE

LAST

BUTLAST

LASTPUT

134

SUMMARY

INPUTS

a number
or word

or list

a number
or word

or list

two inputs:
numbers, words

or lists

RESULT

last digir
last character

last element

all but the last digit
all but the last character

all but the last element

Puts first input behind
second. Except lists
caunot be put behind

words or numbers.




APPENDIX K. WHILE

There is a control-procedure named
WHILE

which is a little like REPEAT. Instead of a number as first input
WHILE needs "TRUE or “FALSE. This "TRUE or "FALSE would normally

be the result of running a question procedure.
The second input to WHILE is a command, s,g, :~
W: WHILE “TRUE PRINT [AGAINI]

WHILE is also a little like IF, e.g.

W: IF "TRUE THEN PRINT [AGAIN]

WHILE is useful because it allows a command to be executed repeatedly

while a condition is true.
While has two jobs to do:

job 1: is the condition true?

job 2: if the answer was true then execute the command
and do job 1 again.
if the answer was false rthen WHILE has finished.

{

sia*-:t

ig

onditic
\\\\ifu
£

J yes

\

| NEAN

wém_g EXECUTE ;
I COMMAND



Here is an example using WHILE:~
W: WHILE GOODMOODQ PRINT "SMILE

The procedure GOODMOODQ must give either “TRUE or "FALSE as its

result

For example:

DEFINE "G00DMOODQ

10 IF GREATERO (RANDOW 103 2 THEN RESULT. “TRUE
 ELSE RESULT "FALSE

END

SUMMARY
The new control procedure is
NAME OF PROCEDURE INPUTS EFFECT
WHILE true or false executes command again
and command and again while first

input stays true.




137

APPENDIX L. AND

There is a LOGO control procedure named

AND

You can use it to make a line of LOGO which contains more than one

command . For exsmple, you can type

W: FORWARD 100 AND PRINT MULTIPLY 7 9
or W: PRINT "ONE AND PRINT "TWO AND PRINT "THREE

after LOGOD has executed the command FORWARD 100 the control procedure
AND makes LOGO lock for ancther command to execute. So LGGOG then

executes the command PRINT MULTIPLY 7 9 and prints 63.

AND can be useful when you want to do more than one thing depending on
an IF, Suppose we want to write a procedure which can take any input
but which will meve the turtie if the input is a number and print OK.

Without using AND we would write the procedure like this

W: DEFINE “CHOOSY "THING
D: | IF NUMBERQ VALUE “THING THEN PRINT "OK
D: 2 IF NUMBERQ VALUE "THING THEN FORWARD VALUE "THING
D: END -

If we use AND the procedure would look like this

W: DEFINE "CHOOSY “THING
B: 1 IF NUMBERQ VALUE “THING THEN PRINT "OK +
C: AND FORWARD VALUE "THING
D: END

SUMMARY

The new control procedure AND can be placed between two commands.






138

APPENDIX M, WHICH LINE IS EXECUTED NEXT ?

Normally the commands in a procedure are executed in the order of the
line numbers. This order can be changed by using the control

procedure named
G0

in your definition. GO needs one input which must be a number.
When a GO is found in a procedure the next line to be executed in
that procedure is the one whose line number is the input to GO .

Here is an example of a procedure which uses GO

W: DEFINE "HEXAGON
D: 10 FORWARD 100
D: 20 RIGHT GO
D: 30 GO 10
D: END

This procedure will draw a hexagon and keep on drawing over that

hexagon.
GO is often used in THEN or ELSE

For example

W: DEFINE "QUESTION
B: 10 PRINT [WHAT IS THE LENGTH OF THE THAMES]
D: 20 IF EQUALQ REPLY [279] THEN PRINT [WELL DONE} ELSE GO 10

D: END

SUMMARY
The new procedure is
NAME OF PROCEDURE INPUT EFFECT
GO ' a number changes which line is

exXecuted next.



. [DR—— T ey irain [R——— [YE—— < crsanarines i FEA— et Cornamsranniand st S J— it




i39

APPENDIX N, RUNNING PROCEDURES

Normally a procedure is rum by typing its unquoted name. But we can

also run a procedure by using LOG0's procedure named
RUN

The first input for RUN must be the quoted name of a procedure. Any

inputs for the procedure to be run must follow that quoted procedure

name
e.g.

W: RUN “FORWARD 100
or W: RUN "PRINT “FRED

RUN can be used inside a procedure. Here is an example

W2 DEFINE "MUTTER “PROC
Dz 10 PRINT RUN VALUE "PROC [THE CAT SAT ON THE MATI
D: 20 PRINT [I HAVE JUST EXECUTED YOUR PROCEDURE NAMED]
D: 30 PRINT VALUE "PROC
D: END

W: MUTTER "FIRST
THE
[I HAVE JUST EXECUTED YOUR PROCEDURE NAMED]
FIRST

We HBUTTER "REsT
LCAT SAT ON THE MATI
[T HAVE JUST EXECUTED YOUR PROCEDURE NAMED]

REST
SUMMARY
The new procedure is
NAME OF PROCEDURE INPUTS EESULT or EFFECT
RUN a quoted procedure the result or effect of
name and its own running the procedure
additional inputs. whose qucted name is RUN's

first input.



[ET——

[ E—

it ninigh




140

INDEX OF PROCEDURE NAMES

- NAME OF PROCEDURE TYPE CHAPTER PAGE INPUTS RESULT
ABBREVIATE defining o 128 2 no
‘ADD | arithmetic 9 34 2 yes
RND control L 137 0 o
ARC drawing g 34 2 no
ARCRIGHT drawing B iz2o 2 no
BACKWARD drawing 2 8 i no
BORROW . memory 16 59 1 no
BOTH question I 131 2 yes
BUTLAST lists J 133 1 yes
CARRIAGE printing A 118 o no
CENTRE drawing 2 10 0 noe
CHANGE defining 6 26 1 no
CLEAR ‘drawing 2 11 0 no
DEFINE defining 4 1§ variable no
DEFINED nemory i6 58 o yes
DELETE defining 6 27 1 no
DISPLAY drawing 2 8 O no
DIVIDE arithmetic g 35 2 vas
DROP drawing 2 1C G no
EITHER question T 131 2 vas
EMPTYQ question 22 80 i yes
END defining 4 18 O 0o
EQUALQ question 22 78 2 yes
FIRST lists 27 93 1 yes
- FORGET memory 7 31 1 no
FORWARD . drawing 2 8 1 no
FREE | draving 2 11 0 10
GO control M 138 no
GDOBEYE _ _'cbntrol 2 12 G no
GREATERQ;' . Quéstion : 22 79 yes




141

CHAPTER  PAGE INPUTS RESULT

NAME DFfPRDCEDURE_ TYPE

HEADING

HOOT =

;&rawing

123
1

c

yes

nge .

a5

“Veontrol

'Eﬁ

- no

:flists

ves

JOIN.

it
LASTRUT
LEFT
yesed
- EIRT
Cprst -

“lists

lists

d:awfng

. question
1 drawing
lists

| question

22

22

SRV O = T RN - R

yes

yes

no

yes

no

ves

4 variables

32

]

no

yes

- MULTIPLY

:;_;-Ngmgggqa 1 question.

1 arithmetic

question

22
22

fmed

ves

yes

PEN T
PLOTTERA

- PLOTTERB

© POSTTION
~ PRINT -

CPUNCH.

. pUT

| drawing
ﬁ dr§wingl
drawing

drawing

printing

- tape

o O e $> 3

27

122
14
125

== P

N N = s e

ves
no
fiake]
no
no

no

~ RANDOM -
| RECALL-
"REMAINDER

- REMEWBER

REMEMBERED
RENUMBER
REPEAT =
 REPLY
RESET

RESULT

- | lists
: étithmetic
memory
\A. arithmetic
 'memory
| memory
f‘_ééfining
:éqﬁtrol
“control
relock

- 1ists

~eontrol

33

83
115
30

36

29

128

ot

= ™ B e L B ST o= e

yes

yes
no
vas

falel

yes

ne

o

yes
no
yes

yes




142

RESULT

ZERGQ

NAME OF PROCEDURE f TYPE CHAPTER  PAGE INPUTS
RETITLE i defining 15 57 wvariable no
RETURN WEMOTY 16 &0 0 no
RIGHT drawing 8 1 no
RUM control N 132  variable wvariable
RUNOUT i paper-—tape E 125 0 no '
SAY printing A 118 1 1o
SETHEADING drawing C 122 1 no
SETX drawing C 122 1 no
SETY drawing C 122 1 o
SHOW - defining 4 22 1 no
SPACE printing 4 118 o] no
STATE drawing C 121 0 yes
sToP control 25 86 0 fo
SUBTRACT arithmetic 9 35 2 ves
TAB » - printing 118 0 no
TAPE paper—tape 125 o no
TIME clock 124 0 ves
TRACE debugging 26 190 1 no
TURTLE drawing 2 8 0 no
TYPE printing A 119 1 no
TYPESET printing A 118 1 no
UNDEFINE defining 7 31 1 no
UNTRACE debugging 26 92 1 no
VALUE variables 13 54 1 yves
WHERE drawing 2 11 0 no
WHILE control 135 2 no
WORD words B 129 2 ves
WGRDQ | quesiion 22 79 1 yes
XCOR drawing -C 123 0 yes
YCGR drawing C 123 0 yes

question 22 79 1 ves




143

DIFFERENT TYPES OF PROCEDURE

i
i

TYPE PROCEDURE NAME  PAGE TYPE | PROCEDURE NAME  PAGE
3
ARITHMETIC ADD 34 |1 DRAWING CSETX 122
DIVIDE 35 SETY - 122
MULTIPLY 35 - STATE - 121
RANDOM 115 TURTLE 8
REMAINDER 36 WHERE 11
SUBTRACT 35 XCOR 123
""" - R YCOR 123
CLOCK RESET 124 ‘ ——
TIME 124} LISTS BUTLAST 133
T FIRST 93
CONTROL AND 137 . JOIN 129
G0 138 LAST 133
GOODBYE 12 LASTPUT 133
IF 81 LIST 129
REPEAT 48 PUT 93
REPLY 84 REST 94
RESULT 70
RUMN 139 i} MEMORY BORROW 59
SToP 86 DEFINED 58
WHILE 135 FORGET 31
SN N A  RECALL 30
DEBUGGING TRACE © 90 REMEMBER 29
UNTRACE 92 REMEMBERED 58
- : RETURN. 60
DEFINING ABBREVIATE 128 e
CHANGE 26 PAPER-TAPE PUNCH 125
"DEFINE 18 RUNOUT 125
DELETE 27 TAPE 125
END E: JR | SEp——— '
RENUMBER 128 PRINTING CARRIAGE 118
RETITLE 57 PRINT 14
SHOW _ 22 SAY 118
UNDEFINE 31 SPACE i18
Ea T TAB 118
DRAWING ARC 34 TYPE 119
ARCRIGHT 120 TYPESET 118
BACKWARD | A
CENTRE 10 |} QUESTION BOTH 131
CLEAR 11 EITHER 131
DISPLAY 8 EMPTYQ 80
DROP i0 EQUALQ 79
FORWARD 8 GREATERQ 79
FREE i1 LESSQ 79
HEADING 123 LISTQ 79
HOOT 11 NOT 79
LEFT 8 NUMBERG 79
LIET 10 WORDQ 7
PEN 123 ZEROQ 79
PLOTTERA PO | -
PLOTTERB 8 VARIABLES MAKE 112
POSITION 122 VALUE 54
RIGHT 8 | e -
SETHEADING 122 WORDS WORD 129




144

MARKERS AND PROMPTS

TYPE ~ SYMBOL PAGE

MARKERS " 14

[1] 16

) 40

THEN ELSE 81

+ 81

127

T 14

< 13

- 78

PROMPTS W: 7

D: 17

REPLY: 84

c: 81

INT: 73
CHARACTER SET A-2
-9

(and also MARKERS)







145

ERRATA
Page 4 Exercise 7: replace 'store button’ by ‘define button'
Page 38 Snapshot 3: replace 'SUM' by 'ADD'

Page 42 Snapshot 2: replace 3 instances of "RIGHT 60" by 'RIGHT 90°

Page 85 Exercise 5: replace 'D:! by ‘W:f
and replace 4 instances of 'W:' by 'D:'

Page 95 Summary : replace 'EFFECT' by 'RESULT!
Page 97 Exercise 1: replace "BOXES' by '"BOXES®
should be Exercise &4

replace section 'This procedure
will ...... rest of the list' by

Pagello Exercise 3

"This procedure will do two jobs very
much like SCRAMBLE.

Job i: 1if there are no more words in
the list then the result is
the empty list.

Job 2: otherwise PUT the scrambled
+ first word of the list at the
beginning of the coded rest
- of the list.'®

Page116 Exercise 5: line 50 of procedure
o insert "+' after SECRET






