University of Edinburgh

Notes on
IMP
Programming

by
P D. Schofield
Lecture Notes
James Clerk Maxwell Building Revised :
The King’'s Buildings October 1977
Mayfield Road
Edinburgh

EHI 3JZ

PROGRAMMING IN IMP

These notes started as lecture notes for students-of Computer
Science 1, using the IMP language on E.M.A.S. (The Edinburgh Multi-
Access System), but have been revised slightly in an attempt to make
them also of some use to other groups. There are still some references
to special facilities provided for the Computer Scierice 1 class, but

the text makes it clear when these occur.

It is particularly important that anyone intending to input
IMP programs on cards should look at Appendix A, note (3), and find
out what convention they have to observe in regard to the quotation

mark character (").

More detailed descriptions of IMP as implemented on any
particular Computer Science or E.R.C.C. machine may be obtained from
the Computer Science Department or E.R.C.C. respectively,
P.D, Schofield.

CONTENTS
SECTION 1 - INTRODUCTION
SECTION 2 ~ DECLARATIONS
SECTION 3 SOME BASIC ROUTINES
SECTION & CONDITIONAL INSTRUCTIONS
SECTION 5 REPETITION LOOPS (cycle, while, until)
SECTION 6 LIBRARY ROUTINES AND FUNCTIONS
SECTION 17 MORE OPERATIONS ON STRINGS
SECTION 8 NUMERICAL AND STRING EXPRESSIONS
SECTION 9 INNER BLOCKS - LOCAL AND GLOBAL VARIABLES
SECTION 10 DEFINING NEW ROUTINES AND FUNCTIONS
SECTION 11 RECURSIVE ROUTINES AND FUNCTIONS
SECTION 12 EXTERNAL ROUTINES AND FUNCTION3
SECTION 13 OWN VARIABLES
SECTION 14 BYTE INTEGER, LONG REAL VARIABLES
SECTION 15 RECORD VARIABLES
SECTION 16 ROUTINE- AND FUNCTION~-TYPE PARAMETERS
SECTION 17 INPUT AND OUTPUT STREAMS
SECTION 18 SYMBOLS
SECTION 19 POINTER VARIABLES
SECTION 20 MAPPING FUNCTIONS
SECTION 21 JUMPS, LABELS AND SWITCHES
APPENDIX A INPUT CONVENTIONS AT CONSOLES AND CARD PUNCHES
APPENDIX B NOTES ON FAULT FINDING

- 1.1 -

SECTION 1 : INTRODUCTION

A complete PROGRAM is used to describe the details of some computation |
that we wish to have carried out. Programs can be written in a variety of
different programming languages, and these notes describe one such langnage,
called IMP. 1In practically every programming language, there are some
details that vary slightly from machine to machine, and also from time to
time as improvements are made to the language. These notes refer primarily
to the version of Imp available in October 1976 on the I.C.L. L4-T5 computers,
operating under the Edinburgh Multi-Access System. Users of Imp on other
machines will need to note a few minor variations. Also, the method of
submitting a program to the machine and having that program run will vary

from machine to machine.

A minimum Imp program consists of:

(i) The keyword begin.
(i) A list, in order, of the instructions we want carried out.

(iii) The keyword end of program.

Of the different types of instruction that may be given under (ii) above,
the most important is the call of a ROUTINE. A voutine call ia an instruction
to carry out some standard sequence-of 0perations, achieving some frequently
requiréd end. Many rout{nes have been defined as a basic part of Imp, and
are permanently available for all to use; later on, we shall see how
additional routines can be defined by the programmer {and his colleagues) to
suit the needs of their particular field of interest. In the case of students,
yet another set of routines is sometimes defined by a lecturer and made

available to his class,

To call a routine, we simply write down the NAME of the required routine,
followed in most cases by some supplementary information that is placed in
brackets aftér the name. Very often, the name of the routine will give a
good idea of what is does. If we are exceptionally fortunate, or our needs
are very simple, there is the slight chance that the combination of just one or two

of the routines available to us will correspond exactly to the vhole computation

wve require, An example is given on the following page.

""112-’

begin

PRINT TABLE OF (9)

end of program

The routine PRINT TABLE OF, used here to-provide an exceptionaliy brief first
example, 18 clearly of extremely limited value; although it does happen to be in the
library of special routines available to Computer Science 1 students in Edinburgh,
it is not generally available to, nor likely to be required by bthers. It causes
a simple multiplié&tion table (as met in ones earliest schooldays) to be printed
at the approniate output device (the console, if the program is being run from a
console; usually a Line Printer in other cases). The supplementary information
given in brackets (officially called a PARAMETER) determines that it will be a
9-times table that is prbduced, though any other integer {(i.e. whole number) could

have been given,

To write more useful programs, we shall have to study a list of the more
common library routines available, and build up what we require from these. In

addition, we shall need to consider:

(i) How to allocate names to storage space (VARTABLES) in vhich numbers,
strings of characters, etc., can be placed by one instruction, ready

for subsequent use by a later instruction{s). (Section 2).

(ii) How to cause a choice to be made between two courses of action,

depending upon the progress of the program so far. (Section 4).

(iii) How to cause one, or a group, of instructions to be carried out

several times. (Section 5).

(iv) How to create new routines of our own, and use them, (Section 10)

Before looking at any of these in detail, let us consider a very slightly more
complex program. Suppose that we wish to write a program to print out an N-times
table, but do not know at the time of y;iting what value we shall want for N.

The solution is to arrange that before printing the table, our program reads as
DATA a number giving the value of N required. This is done by using a standard
routine, whose name is READ. This routine will cause data to be taken from
vhatever is the appropriate source of input (the console, if the program is being
run from a console; from an extra card added after end of program if the program

is being submitted on cards). Our program now begins to look like this.

READ (N)

PRINT TABLE OF (N)

The first routine reads a number as data, and stores it in a place called N;
the second uses this value of N to determine what multiplication table to print.
But before using the VARIABLE called N, ve must DECLARE our vish to have a storage
location set up for this purpose. Since, in this example, we shall only store

integers in N, we write our declaration:

integer N

Our whole program then is as follows:

begin
integer N

READ (N)

PRINT TABLE OF (N)

end of program

This 1is perfectly Satisfaétory, but let us add 2 more routine calls:

integer N

READ (N)

'PRINT TABLE OF (N)

PRINT STRING("THAT CONCLUDES MY FIRST PROGRAM")

NEWLINE
end of program

The PRINT STRING routine causes a string of characters - in this case
it is THAT CONCLUDES MY FIRST PROGRAM - to be sent to the output, after
the N-times table, of course. When printed on an output dévice. linés:of
output are stored until terminated by the character which indicaﬁes the énd
of & line and the start of a new one. This character is sent to the output

by calling the standard routine NEWLINE.

- 1.4 -

Comments

In addition to containing instructions to be obeyed, any worth-while program
vill always include COMMENTS. These are pieces of program which have NO EFFECT
vhen the program is executed, but are inserted to serve a different but MOST IMPORTANT
function - to make the program more legible to human readers, both the author and
others. A comment consists of the keyword comment, followed by any sequence of
characters. Note that if comments extend over two or more lines, each line will

have to start with the keyword comment.

begin

comment The purpose of this program is to print

comment out an N-times multiplication table.
integer N

READ (N)

PRINT TABLE OF (N)

PRINT STRING (“THAT CONCLUDES MY FIRST PROGRAM. %)
NEWLINE

end of program

~ Since comments are used very widely, it is convenient to have an alternative

and shorter way of writing the keyword comment. An exclamation mark is used for

"~ this purpose. |)

begin
! The purpose of this program®is to print
' out an N-times multiplication table.
integer N
READ (N)

" PRINT TABLE OF (N)

PRINT STRING (" THAT CONCLUDES MY FIRST PROGRAM, ")
NEWLINE

end of program

The structure of a simple program

A program consists of a sequence of STATEMENTS, We may distinguish four main

classes of statement:

(i) DECLARATIONS. These are preparatory statements, allocating

names to various entities, chiefly variables.
{e.g. integer N) |
(ii) INSTRUCTIONS. These are the statements that cause things to

happen: data to be read in, values to be stored
in variables, calculations to take place and

results to be output,

(iii) COMMENTS. Statements that are inserted for the benefit

of the human reader, but have no effect at run-time.

(iv) BRACKETING STATEMENTS, Statements that mark the beginning and end of
certain groups of statements, For example,

" begin and end of program mark the beginning and

end of a whole program. Shortly we shall meet
others, such as cycle and repeat, which mark the
beginning and end of a group of instructions to be

executed several times over.

The correct order of statements in a simple program.

Comments may be placed anywhere. Apart from this, the correct order is:
(i) Dbegin

(ii) The declarations.

(iii) The instructions, interspersed with bracketing statements as necessary.

(iv) end of program.

Two (or more) statements on one line.

In our programs so far, each statement has been written on a separate line.
If desired, however, two or more statements may be written on one line, provided they

are separated by semi-colons. For example:

READ (N) ; PRINT TABLE OF (N)

It is often convenient to put one instruction and a short comment upon that

instruction on the same line. For example:

READ (N) ; comment N determines which table is to be printed.

- lt6 -
KEYWORDS, NAMES AND STRINGS

In our first program, we had examples of letters of the alphabet being used in
three different contexts:

(a) 1In Keywords.

In many books orni programming languages, our attention is drawn to the
keywvords of the language by printing them in lower-case letters and either printing
them in bold type, or by underlining them. Throughout these notes, underlining
- ¥Will be used (e.g. begin). When ve come to input to the computer, however, most
devices have neither lowver case nor underlining; instead we shall represent keywords
with upper case letters and prefixing with a % character (e.g. SBEGIN). See
Appendix A for details; and note that if a keyword is broken up into separate words,
as it may be for legibility, then a f character is placed in front of each. (e.g.
ZEND ZOF %PROGRAM).

(b) In Names.

In our earlier example, we saw that we refer to routines by their NAMES.
Shortly we shall also need to allocate names to YARIABLES and, later on, to a few
other entities in the language. A name always starts with an upper-case letter of
the ﬁlphabet (A,B;C.....Z) and may be followed by one or more digits (0,1,2,.....9),
or by further letters, or a mixture of the two. |

Examples X, SUM, A2B3, PRINTSTRING
Notes (i) There is no limit on the length of a name.
(ii) Note the distinction: keywords consist of underlined

‘letters (marked by %), names consist of non-underlined

letters and digits.

(¢) In Strings.

In our earlier exﬁmple, we were concerned with the strihg of characters:-~
THAT CONCLUDES MY FIRST PROGRAM. It was not & keyword, nor was it the name of
anything; it was simply a sequence of 32 characters (27 letters, 4 spaces and one
full stop) which we wanted manipulated as one - in this case it was to be printed
out. We mark out the extent of the string by enclosing it between quote characters.
A string may consist of anything from O to 225 characters. (Some further details

are given in the section on string constants).

Note As convenient for legibility, spaces may be freely inserted

almost anywhere in a program, without altering the meaning,
Hence, the routine name PRINTSTRING, is more legible if written
PRINT STRING. Two exceptions to this are:

(i) Spaces within a string count as characters of that string.

(as one would w1sh)

(ii) If spaces are inserted within keywords, additional %

characters are required, as above.

- 2.1 ~

SECTION 2 - DECLARATIONS

(1) SCALARS

Before we can use & variable we must specify what sort of variable we want and

what its name is to be. The main types of variable are:
(a) numerical (subdivided into real and integer - see below)
(b) string_ | A string varidble can store a sequence of characters.
DECLARATION MEANING

integer A, B3 I intend to use two variables which I will call A and B3.

- They must be capable of storing integer (whole number) values

in the range -2147483648 to +214T4836LT. (That ig -2-F to 231—1J.

real C | I intend to usé a vafiablé which I will call C. It must be

capable of atoring'"real"'values. that is a number vhich may be
either an integer (e.g. 17) or a number with a fractional part
(e.g. 12.261). On_many curreht machines, the range of real
numbers that can be étored is (approximately) +7Tx 1075; and
they are stored to (abbﬁt) 7 significant decimal digits.

(This can be changed to 17 significant digits if long real

vafiables are declared).

string (16) 8,T I intend to use two variables which I will call S and T. They
must be capable of storing strings of anything up to 16

characters each, For example:

"EDINBURGH" (9 characters)
"COMPUTER SCIENCE" (16 characters - the space counts)

When declaring & string variable, one gives an upper limit on the
length of string that caen be stored. (16 in this example).
The largest upper limit permitted is 255. Thus, string (256) S

would be an illegal declaration.

Notes

(1) The compiler automatically allocates locations to the variables as they are
declared. The programmer does not need to concern himself vith where the variables

are located - he always refers to them by the names he has declared for them.

(2) When the values stored in integer variables are multiplied or added the exact
ansver is produced. When doing arithmetic on real variables the answers are

"rounded off" to (about) 7 significant figures.

- 2.2 -
(ii) ARRAYS

We can also declare a whole array of variables, &ll having the same name, but

distinguished from one another by means of a "subscript", which is written in

brackets after the name of the array.

Examples.

~ integer array DSI:4)
real array E(1:9),F,6(-3:2)
string (25) array P(1:50)

These cause the. allocation of space to four integer variables D(1), D(2), D(3)
and D(4), nine real variables E(1) to E(9), twelve resl variables F(-3) to F(2)

and G{-3) to G(Z) and fifty string variables (each of maximum length 25) P(1) to
P(50).

Note the difference between : integer array D(1:4)

and : integer D4

The former creates fourw%driables, of which one is referred to as D(4); the

latter creates one varisble D4,

UNIQUE USE OF NAMES

Names cannot be used simultaneously for two different purposes. For example:

integer A
integer array A(1:10)
would be faulted by the compiler.

Other types of declaration, associating names with multi-subscript arrays and
with the user's own routines, functions and predicates etc. will be explained later.
The same prohibition on simultaneous use of a name for two purposes applies to all

such declarationa. (However, gsee later section on local and global variables).

- 2.3 -

(iii) MULTI-SUBSCRIPT ARRAYS

We have already seen how to declare arrays with one subscript. Arrays with

two subscripts can also be delcared.

Example Meaning
real array A(1:2,1:3) Declare 6 real variables

to be known as follows:-

A(1,1) A(1,2) a(1,3) A(2,1) A(2,2) A(2,3)

It ie often easier to think of these in_two dimensions, and it may be our

desire to do so that motivates the declaration of a two-gsubscript array:-

CA(1,1) A(1,3) |

Arrays with more than two subscripts can be declared in a similar way:-

real array B(M:N+1,1:5,-1:3),C,D(-10:10)
integer array F(1:3,1:5,1:20,1:30)
~ gtring (20) arrsy G,H(1:3,1:3,1:10)

Notes
(1) The maximum number of subscripts is 6.

(2) Any of the array bounds may be given as integer expressions, for example
see B above, but in this case we have to ensure that M and N have values
assigned before reaching the declaration. (Also see later section on block

structure).

(iv) DECLARATION OF CONSTANTS

In general, the declaration of a variable is a preparatory statement, causing

a storage location to be allocated and to be given & name. At this stage, no

value is stored in this location. Subsequently, instructions will be given (see

next section) to store a value, change it, etc,.

Sometimes it is convenient to have a storage location allocated and to be

given a value which will not be altered during the subsequent stages of the

program. In such cases we can make the declaration and assign this fixed value

in one stﬁtement; by declaring a const integer, real or string. For example:

const real E = 2,7182818, G = 9,80665
const string (25) VENUE = "LEVEL 3 of APPLETON TOWER"
const integer CLASS SIZE = 152 L

Arrays of const's can also be useful, and may be declared as follows:-

const string (4) array DAY (1:7) = "MON", "TUES", "WED", "THUR",
"FRI“ “SAT" “SUN“
] p |

const integer array P(11:40) = 3(10), 6, 4 (19)

T,

The first sets DAY (1) equal to "MON", DAY (2) equal to "TUES", etc. The
second declaration gets the first 10 elements of P (i.e. P(11l) to P(20)} inclusive)

to the value 3, the next one (i.e., P(21))to the value 6 and the remaining 19 to
the value k. |

—

Notes (1) Although two or more const scalars may be declared in one statement
(see the two'const'reals above), a separate declaration is needed for
each const array. | |
 (2)| Cons£ arrays are limited to one dimension {one subscript).

(3) The_boundé of'a const array must be constants - thus in the last
example, the constant bounds (11:40) could not be replaced by dynamic
bounds such as (M:N).

() The values assigned to the elements of a const array are separated
by commas., If the list spreads over two or more lines, the continuation

symbol (c) is not necessary (though permitted), provided the line ends

with a comma, .

- 31-1 -
SECTION 3 - SOME BASIC ROUTINES

Having declared the variables we shall need, we now give a sequence of
instructions. A program is norn&lly supplied with a file of DATA upon which to
act, and we shall clearly need routines to read information from our data file
and place it in our variables. As indicated in section 1, the data file may
consist of characters typed in at the console or it may be supplied on punched
cards. It may also consist of a file already stored on EMAS (The Edinburgh
Multi-Access System),.

The data consists of a sequence of characters. These can be read
individually, but more often we wish to read a group of characters forming either
an integer {(e.g. 17), a real number (e.g. 3.l) or a string (e.g. "MORRIS 1300").
Routines to read such sequences and place them in variables of appropriate type

are given below.

(1) INPUT ROUTINES

MEANING

READ (A) Take the next (unread) number from the data file
and place its value in A, which may be an integer or
a real variable. If A is an integer variable, then
it is essential that the next number occurring in the
data!is an integer, If A 18 real, then any number
is acceptable.

READ STRING (S) Take a string of symbols from the data and place
| it in string variable S. In the data, the beginning
and end of the string must be shown by quote marks,
although the quote marks themselves do not count as
part of the string. (Also see page 8.4).
Note It is often inconvenient to have to place

quotes around every string in our data, as required
by the READ STRING routine. An alternative routine
which inputs non-numerical data one character at a
time is:~

READ ITEM (S) - Take one character from the data, and place it
in the string variable S. The single item read may
be a letter, a digit, a punctuation mark, a space
(occurring between printing characters) or even the
"newline® character which is deemed to exist betweean
the nnd.of one line and the beginning of the next,
Since it is known that only one character is to be

read, no quotes are used,

- 3.2 -

Notes (1) Once a character has been read {as part of a string or number), we
move forward along the data file and cannot read that character again.
(Except by re-running the program.). |
(2) When reading a succession of numbers from a data file, the numbers
must be separated by spaces, or placed on separate lines. Other characters

such as commas or semi-colons between numbers will cause a fault.

(ii) OUTPUT ROUTINES

At some stage of the program we shall need to print out some results of our
calculation. These will go to an OUTPUT device (this may be the computer console,
or a Line Printer) or an OUTPUT file to be stored on EMAS. Where the results
go depends upon the system being used (and can also be affected by instfuctions
described in section 17), but does not affect us here. Irrespective of where they

- g0, we use the same output routines,

MEANING

WRITE (1%J+3,4) - Evaluate the numerical value of the first
| INTEGER expression (i.e. I*J+3) and write this
value to the output (device or file), using 1
position for the sign and 4 for the digits of;the
number; that 18 5 positions in all, This routine
can only deal with integer expressions. (The

figure 4 can, of course, be varied).

PRINT (X+Y,3,2) | Evaluate the REAL expression (i.e. X+Y) and
print its value, using 1 position for the sign,
3 for the digits before the decimal point and 2
for the digits after the decimal point taking
1+3+142=T7 positions in all. (The figures 3 and

2 can of course be varied).

PRINT FL (Xx+Y,3) Evaluate the expression X+Y and print its
value in floating point form, with 3 digits after

the decimal poiﬁt. (In floating point form,

6.321@ -3 means 6.321 x 1075).
~ PRINT STRING ("MORRIS 1300") - Evaluate the expression in brackets (which
PRINT STRING (S."AND".T) vill be of type string), and print it. 1In the

first example, the expression consists of a
constant string of 11 characters (the quotes mark
the beginning and end, but are not printed
themselves). In the second'example. the

expression consists of the string presently stored

L . e B D et bl TRt L LT L W LTSRN AT I R T R e A O e e T ey ey O L T 8y) T b L ko e el i K1 okt o by o e e
- Rt T R LR i i L Frks B Sl ot o i i

-31:3_

in S followed by the constant 3-character
8string AND, followed by the string presently

gtored in T.

SPACE | Write one or more 'space'.characters to the
SPACES (L) output. When a space character is printed, it
causes the printer to move 1 column to the right

across the page.

NEWLINE “Write one or more 'newline' characters to the
NEWLINES(3) - output, When a newline character is printed,
| it causes the printer to move to the start of

a new line.

NEWPAGE Write a 'newpage' character to the output. |
When printed, this causes the line printer to move
to the top of a new page., At a console, it has

no effect.

(iii) ASSIGNMENT INSTRUCTIONS

One operation very frequently required is to work out some expression
involving the values currently stored in one or more of our'vari&bleq,'ahd
perhaps also some constant values. Instead of sending the anawer to the'outpﬁt
device or file (as with WRITE and PRINT STRING), we pqy.wish to place the answer
back in a variable for use again later. Since this Operatioh will be requirtd

frequently, a special concise notation is used for it:-

INSTRUCTJON ,) MEANING

A=B 4+ . Work out the expression on the right (i.e. the
| ~value of B plus the value of C) and then make A have
this value, If the contents of A,B and C before

varrying out this operation were

HIE

then on completion the contents would be

A B C

(1) =D(3) +B -7 ~ Work out D(3) + B -~ 7 and then make D(1) have this

Vaiua M

- 3.4 -

Note (1) When a value is assigned to a variable, any value previously stored

in that.variable is lost. (e.g. The value 5 in A in the example above).

(2) The 'equals' sign (=) is used in & slightly unususl way in asslgnment

inatructions. In particular, note:

(i) A=B+C is a normal assignment .
B +(C =} is meaningless. (The left-hand side must be the

.name of & variable previously declared.)

(ii) B=¢ " means: Put a& copy of the value now in C, into B.
C=B means: put a Copy of the value now in B, into C.
(iii) A=A + 3 is quite normal, resulting in 3 being added to

the value stored in A.

(3) On the rlght hand side of an assignment, we may write any expression

that wlll work out to glve a value of the correct type, as follows:;-

an integer varlable can only store integer values.

a real variable can only store real values, (But if the value
calculated is an integer (3, say)this will automatically
be converted to the corresponding real value 3.000000000
if required for storage in a real variable.)

a string - variable can only store string values.

(4) The operations of addition, subtraction, mﬁltiplication and division
’are repreéented by +, -, * and / (sometimes //) respectively. For fuller

détails, see Section 8. | - . -

(iv) ASSIGNMENT OF STRING EXPRESSIONS. ~ (also see Section T)

Ar1thmetlc operations are not meanlngful to apply to strings. At
~this stage we are concerned with only one operation on strings, called
CONCATENATION (represented in expressions by a full stop), which places

one string immediately after 'another.. For example, the irstructions:

"TIMBUKTOO"
| "EDINBURGH"

S = “TIMBUKTOQ" 3
T = "EDINBURGH" will store as follows:

A subsequent instruction | T =8." IS FAR FROM " .7

will result in thig: .

- 4.1 -

SECTION 4 (A) - CONDITIONAL INSTRUCTIONS

(1) if...then...else
u——_-m

Sometimes, at some point in the'computatibn, we shall need to make a choice
between two courses of action. In our earlier program to read a number (N) as data
and print the corresponding multiplication table, we might feel that if N turns out
to be 0, it would not be worth printing a O-times table, but that instead we should
Print a brief explanatory message. To achieve this, we should need to arrange that

once a value for N has been read, we test to see whether or not N equals O, The

flow of control would be:

does N=0

PRINT
SHORT
MESSAGE

'START OUTPUT ON
A NEW PAGE
PRINT MULTIPLICATION
TABLE

and one way of writing the program would be:

begin
comment This program follows the flow diagram above.

integer N

READ (N)
if N = 0 then start
PRINT STRING ("NOT WORTH PRINTING O-TIMES TABLE")
NEWLINE
finish else start
NEWPAGE
PRINT TABLE OF (N)

finish

end of program -

It is worth noting that the above program would have exactly the
same output in all cases if we swopped over the tuo.;lterﬁative routes, and

at the same time negated the condition; that is wrote:

if N #'0 coee

- 4.2 -

begin

comment The condition has been negated.
integer N

READ (N)

if N # O then start

NEWPAGE
PRINT TABLE OF (N)

finish else start | |
PRINT STRING("NOT WORTH PRINTING O-TIMES TABLE")
-NEWLINE |

finish

end of program

(1i) Omitting else
e ———
It quite often happens that one of the two alternative paths involves taking
no action. In the above program, for example, we might decide that in the N = Q
case we should refrain from printing anything at all, even the 'NOT WORTH PRINTING'

message. If there are no instructions to go between the second start and finish,

the whole of this section, including the'key?ord else, are omitted. This gives:

comment This program will produce no output if
comment N turns out to be O. |
integer N
READ (N) ,]
if N # O then start
NEWPAGE |
PRINT TABLE OF (N)
finish

end of Erogrq!

(iii) Omitting start and finish

IF there is only one simple instruction between the start and finish, then the

start and finish can themselves be omitted, and the one instruction is put in place of

the start. Thus, if we decide to omit the NEWPAGE instruction, we can use the

following very useful and simple form of conditional instructions.

if N # O then PRINT TABLE OF (N)

and another useful abbreviated form permits if...., then else in one line.

if N = O then PRINT STRING (NOT WORTH IT") else PRINT TABLE OF (N)

(iv) Further conditions.

So fnr, cond1t1onal clauses have involved comparison of two numerical quantities
either for eqnal1ty (=) or for non-equality (¥). The four other natural comparisons
will be written in normal mathematical notation, namely: 3 , 3 .<, .{. meaning

"greater than", "greater than or equal to", "less than" and "less than or equal to"
regspectively. For 1nput to the computer, however, the non-availability of the

characters g and { leads us to represent these by two characters each
Thus:

Written form | Form for input to computer

if A%»B then %IF A»= B XTHEN
if P+Q £ C-17 then | fIF P+Q&{= C-1T STHEN

(v) Compgrison oflgpring'.

Two strings may be compared in the same le ways, It should be remeﬁbered
however, that any spaces present count as part of strings. Hence the 3*letter string

-

YCAT" is NOT equal to the L-letter string ®CAT ", a8 the latter has an extra space.

In the context of strings, "greater than" is taken to mean "comes LATER IN
DICTIONARY ORDER than". Hence |

if S) “SMITH" then PRINT STRING (S)

would cause the string stored in S to be printed only if it came later in dictionary
order than ¥SMITH". A "dictionary order" relationship between strings that contain

characters other than letters of the alphabet does exist, but will not be d1scusaed
at this stage.

(vi) Use of unless

Any condltlon written with an if clause may- alternatively be expressed in the
negatlve form using an unless clause. |

ir N #0 then)

)) are exactly equivalent
unless N = 0 then)

A QDB then) |
) are exactly equivalent
) ' .

(Note: £ NOT <)

af

unless A& B then

- 4.4 -

(vii) The instruction stop

The execution of a program automatically terminates upon reaching end of program,
In certain cases it is convenient to terminate prematurely if some special
circumstance arises (say, if N = 0), and for this purpose the instruction stop _is

provided,

YES NO

PRINT
SHORT

INSTRUCTIONS WE

MESSAGE

WANT IN NORMAL
CASES, |
1.6, WHEN N

At first sight, we might think that this calls for an "if veses then elge"

construction, but since execution of s stop instruction causes the program to stop,

the folldﬁing is simpler,

begin
‘integer N
READ (N)
if N = 0 then start
PRINT STRING ("NOT WORTH PROCEEDING")
- NEWLINE |

stop
finish

tesesrsesrsennas ; ! We only reach this point if N # 0

L B B B B B BN R N N RN T R A

* 5 8 88 0 U B ERE S S

~end of program

If we are prepared to omit the warning message when N=0, the whole

start/finish group might be contracted to:

if N =0 then atoé

- 4,5 -

SECTION 4(B) - FURTHER FORMS OF CONDITION

(1) Writing conditions on the right,

In the case of conditional instructions that do not make use of start, finish

or else, we majzwrite the instruction first, followed by the condition., Thus the

following are exactly equivalent:

if N # 0 then WRITE (N,2)

WRITE(N,2) if N # 0

and, of course, both are also equivalent to the following two:

unless N = O then WRITE (N,2)

WRITE(N,2) unless N = 0

The form to be chosen depends uvon individual taaté_and'upon which best mirrors the
way we wish to think about the condition being tested., Most people would regard

the third version above as inelegant, and therefore generally to be avoided,

_Rem@mber Those alternative forms with the condition

on the right are NOT permitted when start,

finish or else is involved.

(ii) Concatenating two instructions

If start/finish brackets enclose & very small (normally no mofé than

two) unconditional instructions, a concise form is permitted.

if N # - 0 then start
READ (X)
SUM = SUM + X

finish

may be written in one statement:

if N # O then READ (X) and SUM = SUM + X

Note This is only allowed if both the instructions to be concatenated are

unconditional instructions., If one itself involves another condition,

we cannot avoid the start/finish . For example:

if N # O then start
~ READ (X)
if X > O then SUM = SUM + X

finish

- 4.6 -

(ii1) Compound conditions. Examples are:-

z= 13 then *eone
Z = 13 thﬂn RN NN

i
i

if X>» Y and Z

if 13 and A + B
if (x> Y and EZ

13) or A+ B

C+D then.....
C+-D then secuye

if A BLC then
if ACB C and C&D then

- l—

Notes

1, The thlrd example gives three simple conditions connected by and. The

~ nugber of and 8 is not 11m1ted The same applies to a 8equence of or's,

2, Where and and or are both used within the same condition, brackets are

required (as in the fourth example) to avoid ambiguity,

3. Following normal mathematical notation, the fifth example is a more

compact way of writing:

if ACB and B <C then

4. - However, this contraction cannot be extended, and the following would be

faulted (But see the sixth example above for an acceptable form)

if A LB C(D then

5 The components of a multiple condition are examined from left to right

and testing ceases as soon as sufficient is known to decide whether or not to
carry out the main instruction. Thus, supposing in the first example above, that
- the test for "X > Y" shows this condition to be unsatisfied (i.e. X is not

greater than Y) then it is unnecessary to test for Z = 13 and so the value
stored in 2 will not be examined.

6. or means "inclusive or". Thus the second condition above means: -

"if X» Y or Z=13 OR BOTH"

(iv) Conditions involving string resolution.

See Bectidn'7 .

- 5.1 ~-

SECTION 5 (A) - REPEATING GROUPS OF INSTRUCTIONS
(CYCLES)

If a group of 1netruct10ne i8 placed between the brack:etlng keywords cxele and

repeat ‘then as soon as the last instruction of the grouwp is completed, we shall start
all over again with the first instruction, and so on |

begin

conunent: ThlB first veremn is unsatisfactoxy, because

| comment there is nothmg to meke it termimat.e.

~ integer N
cycle
READ (N)
PRINT TABLE OF (N)
repeet

end of program

There are many ways of writing in the arrangements to Terminate the loop.

(i) Using a control variable

Suppose that we know exactly how many times ve wish to go round the loop; let

it be 10 times. We must declare an extra 1nteger to be 'ueed to count 1,2,3, h.....lo
Let us give it the name COUNT |

begin
comment The meaning of the cycle below is as follows

comment "First time round, set COUNT equml o 1,

comment Each time round, increase COUNT By 1L and

comment Stop the cycle at the end of the t Emme when COUNT = 10"
integer N, COUNT

cycle COUHT 1, 1, 10
'READ (N) |
PRINT TABLE OF (N)

repeat

end of program

- 5.2 -

The control variable (COUNT in the above case) must be an integer, but there
is no need for it to start with the value 1, nor for it to go up in steps of 1.
Furthermore, we can use the value of the control variable to make slightly different

tﬁings_happen each time round the cycle.

begin
comment ~ The control variable, let us call it 'I' this time,

comment will take in turn the values 2, T, 12, 17 and 22,

comment Thus we get 2-times, 7-times....22-times tables printed.

_‘integer I

cycle I =2, 5, 22
PRINT TABLE OF (1)

repeat

end of program |

(ii} Using a conditional exit.

Any cycle/repeat loop will be terminated if an exit instruction is obeyed.

begin

comment Below, when N turns out to be zero, the exit will

' comment ~ cause the cycle/repeat loop to be terminated. By

comment putting it before the printing instruction, we avoid

comment putting out the O-times table.

integer N

cycle
READ (N)

if N = 0 then exit .
PRINT TABLE OF (N)
repeat

comment When exit occurs, the program resumes from

comment immediately after the repeat (i.e. from here).

PRINT STRING ("STOPPING NOW BECAUSE N = 0.,")
NEWLINE

end of program

Note: The instruction exit is only valid inside a cycle/repeat loop and

causes 8n exit from that loop. If it appears between start/finish
brackets (which are themselves necessarily enclosed inside cycle/repecat),
it causes an exit from the enclosing cycle/repeat.

5'3

(iii) Using an until clause.

ity s e ———

If, in the above, we deéided to allow the O-times table to be printed before

exiting from the cycle, we should need to move the line with the conditional exit
down one:

cycle
READ (N)
PRINT TABLE OF (N)

if N = 0 then exit
repeat

In a case like this, where the conditional exit comes immediately before the
repeat, we are allowed to write the loop in a slightly more compact form:

until N = 0 cycle

READ (N)
PRINT TABLE OF (N)
reEeat

Note that, although the condition is written on the line with the cycle, the test is

actually made at the end of the loop, which will therefore always BE EXECUTED AT
LEAST ONCE. The flow diagram looks like this:

Condition
is not (yet)
satisfied
(i.e. N # Q)
Condition
ie
satisfied

(N = 0)

(iv) Using a while clause.
_ e —————

while and until clauses are negatives of one another in much the same way as if

and unless. (Remember that "if N # 0" and "unless N = 0" are equivalent), but they
also differ in the TIME at which the test is carried out. When controlling a cycle
with a while clause, the test for existing is made BEFORE carrying out the first

instruction of the 1de;

Condition atisfied

- YINSTRUCTIONS
.Condition
MORE | NOT
INSTRUCTIONS | satisfied

begih N |
- comment This program reads a POSITIVE integer (N), then

comment caiculates and prints.the remainder when N is

comment divided by T. This is done by repeated subtraction

comment of 7, continuing as long as N is } 7. 1In case

comment N is originally less than 7, we need to test BEFORE

comment the first subtraction is carried out.
integer N
| READ (N)
while N) T cycle
N=N-T

repeat |
comment This program assumes POSITIVE input data.
PRINT STRING (“REMAINDER = “)
WRITE (N, 1)

NEWLINE
end of progream

Note . The above example is intended to be simple to understand,

- This is not generally an efficient method of finding a

réemainder (unless N is known to be smnil).

- 5.5 -

Some restrictions in the use of cycles,
(1) In the case of a cycle with a control variable (i.e., cycle I = M,N,P+3) the

controlling variable (I) must be an INTEGER variable. The three integer expressions
for first value, increment and final value (i.e. M, N and P+3) may contain variables
as this example shows, but they must work out so that the cycle terminates, That is,

the difference between (P+3) and M must be an exact non-negative multiple of N.

(2) A cycle may be controlled by ONLY ONE of (i) a control variable, (ii) a

vhile clause, (iii) an until clause, In other words it is invalid to write:

until X = 0 cycle I = 1,3,N

'On the other hand, a cycle controlled by any one of the above three may also have an

exit instruction within,

NESTING OF CYCLES

A cxclt/regeat_group_may itself be enclosed in a further cycle/repeat. A
common need for this arises when operating on 2-subscript arrays.

A(1,1) A(1,2) A(2,3)

A(2,1) A(2,2) A(2,3)

cycle COL =1,1,3 | 3+ This cycle will read three numbers from
READ (A(1,COL)) ;! the data file into A(1,1), A(1,2) and
repeat +! A(1,3), thus filling the first row,

V- S S G- S-S S A T - Y - S R S - -ni- s S - Y S il bl wl—

cycle ROW = 1,1,2 | ;4 These nested cycles will read six numbers
cycle COL = 1,1,3 +! into A(1,1), A(1,2), A(1,3) followed by
READ (A(ROW,COL)) o' A(2,1), A(2,2) and A(2,3).
repeat
repeat

s i - ol vl i liels i ven. - w— A S S—— - W - E-E T N TR Sk SR Y - R .

cycle COL = 1,1,3 But by reversing the order of the cycles,

cycle ROW = 1,1,2
READ (A(ROW,COL))

_ reEeat
repeat

8ix numbers would be read in, column by
column, That is in the order A(1,1), A(2,1)
followed by A(1,2), A(2,2), followed by
A(1,3), A(2,3)

o we -
- |

- 5.6 -

SECTION S(B) - SHORTENED FORMS OF while/until

Cycles controlled by while or until clauses and containing & small number

(usually one) of simple uncondltlonal instructions, may be wrltten in abbrev1ated

forms, analagous to those used in place of start/f1n15h groups.

(i) Consider the previous example of taking a remainder when N is divided by 7.

while N> T cycle
N=N-T17

repeat

This can be contracted to either of the following equivalent forms:

(a) while N 3 7 then N =N - T
(b) N=N-1T7 whlleN.)T
(ii) A cycle to read and sum a set of numbers which are known to be terminated

with a zero, is (assuming SUM and X have been declared):

SUM = 0
until X =0 cycle

- READ (X)
SUM = SUM + X

repeat

Two possible and exactly equivalent contractions are:

(a) SUM =0 | |
until X = 0 then READ (X) and SUM = SUM + X

(b) SUM =0
READ (X) and SUM = SUM + X until X =0

- 6.1 ~

SECTION 6 : LIBRARY ROUTINES & FUNCTIONS

These may be classified.as follows:~-

(a) Routines e.g. READ STRING (S)
NEWLINE
WRITE (I*J,3)
SORT STRING ARRAY (X,1,50)
PRINT STRING (S.T)
READ (I)

(b) Functions (i) integer functions e.g. LENGTH (S)
CINT (Y + 3.1)

(ii}) real functions e.g. SQ RT (Y*Z)

- (iii) string function e.g. DATE

A routine call is a complete instruction. A function, on the other hand, is
used as part of an instruction. 1Its purpo&ie is to generate ONE VALUE. This value
must then be used as part (or the whole) of an expression of appropriate type -

integer, real or string.

For example, suppose the following declarations had been made:—

integer I,J,K ; real Y,Z ; string (50) s,T,U

Then the following would be possible statements:-

I = LENGTH (S) + 17
Z =SQRT (Y * 2)
PRINT STRING (“TODAY IS “.DATE)

Note that we describe a function as an integer function, real function or string
function, depending upon the nature of the value it produces as its resgults this
has nothing to do with the types of the parameters given in brackets. In fact,
neither of the examples of integer functions given above takes integer-type
parameters, LENGTH takes the name of a string as parameter (but gives as its
result an INTEGER giving the number of characters currently stored in that string

variable), INT takes a real expression as parameter {but gives as its result

the INTEGER value nearest to the real expression.)

SPECIFICATION

- 6.2 -

Before we are able to use a library routine or function, we need to be told:

(a) 1Its type: routine, integer function, real function or string function.

(b) 1Its NAME,

(c) The number and type of parameters fequired.

(d) What it does.

These first three are sometimes written as a "specification, in the form:-

routine spec SORT STRING ARRAY (string array name X, integer A,B)
integer fn spec LENGTH (atrigg name S)

utrlgg fn spec DATE

routine spec PRINT (real EXPR, integer DP1, DP2)

" routine apec WRITE (1nteger EXPR, DP)
roeutine spec SWOP INTEGERS (integer name I,J)

In this context, the names used for the FORMALQPARAMETERS are of no significance,

and only serve to show how many actual parameters of each type are required when we

call the routine. We have (so far)'nine types of formal parameter:

integer array name)
real'arrax name
string array name)

integer name

real name

string name' .)

‘integer)
real)

string ())

UU

Actual Parameter Needed

The name of an array of appropriate type

(integer, real or string) 6.8. A

The name of a single varlable'(or gingle
element of an array) of approPriate type (integer,
real or atrlng) €.8e S A(?) B(I,J)

An expression of appropriate type (integer,
real or string), except that an integer expression
may be used in place of a real expression - (but

not vice versa). e.8. I*J Y + 3,1 S.T

Note that WRITE takes two integer (i.e. integer expression) parameters, while

SWOP INTEGERS takes two 1nteger name parameters. Hence we can use the expression

(I*J) in |
| WRITE (1#J.3)

but HOT‘;: a parameter to the routine READ , In any case, it would be hard

to ascribde a_ngﬁning if we did write:

1READ_(I*J)

- 6.3 -

SUMMARY OF LIBRARY ROUTINES & FUNCTIONS AVAILABLE

(i) Common input and output ROUTINES,

These were described in Section 3: READ READ STRING READ: ITHIM
| WRITE . PRINT ~ PRINT FL
PRINT STRING
NEWLINE - NEWLINES NEWPAGE
SPACE SPACES

(ii) STANDARD INTEGER FUNCTIONS

In the tables below, the type of parameters taken by each function will
‘be indicated in brackets after the NAME of the function.

Name Parameters The value calculated 1is:
INT (reai X) -~ The nearest integer to the real expression

given as parameter, X.

INT PT (real X) The integral part of X. Note that
| INT PT(3.73) is 3, but that
INT PT(-3.73) is -,

IMOD (integer I) The modulus (absolute value) of I.
| Hence, IMOD (-3) gives +3,

REM (integer I,J) - The remainder when I is divided by J,
| ##% Provided for Computer Science 1

students - not in standard IMP, ###

LENGTH (string name S) The number of characters in the string
varigable S,

(iii) Standard STRING FUNCTIOH

FROM STRING (string name S, integer I,J) A copy of the Ith to the Jth

characters (inclusive) of S, The string
variable S is itself unaltered. Also see

section T,

(iv)

Standard REAL FUNCTIONS
Name Parameters
SQ RT (real X)
MOD (real X)
FRAC PT (re X)
LOG (real X)
EXP (real X)
SIN (real X)
CoSs (real X)
TAN (real X)
ARCSIN (real Xx)
ARCCOS (real X)
ARCTAN (real X,Y)

- 6.4 -

The value it calculates:

The (non-negative) square root of X.
The absolute value of X.
e.g. MOD (-3.73) = 3.73
The fractional part of X
e.g. FRAC PT (3.73) = 0.73
FRAC PT (-3.73) = 0.27

The logarithm to base e,

X
e .

The usual trigonometric functions, but

note that X is in radians.

sin-lx, vhere | X | & 1 and the result is
in the range -N/2 to N/2.

cos ~, where | X | £ 1 and the result is
in the range O to II.

tan“l (Y/X) with the result in the range
-l to +I, If" X > O, the result is in

the 1st or Uth quedrant. If X < O, the

result is in the e2nd or 3rd quadrant.

(v)

XU RNOTE

(vi)

{vii)

TIME, DATE & CPU TIME

Name Parameters The value it calculates 1is:
TIME NONE The time of day when the function is

called,given as an 8-character
STRING, For example: "1hL:27:31"
(2h-hour clock)

DATE NONE The date when the function is called,
given as an 8-character STRING,.
For example: "27/10/76"

CPU TIME NONE This gives a REAL number, for the
amount of time in seconds spent by
the Central Processing Unit on the
execution of this program, up to the
time of calling the function. Since
the starting time for this "eclock"
is undefined, this function should
always be called TWICE, and the
difference between the two values

taken. The result 1s accurate
to 0,001 seconds.

Users other than Computer Science 'l students will need to give an

external specification before using any of the above three functions.
This takes the form:

external string fn spec TIME

external 8tring fn spec DATE

external real fn spec CPU TIME

PRIVATE LIBRARIES

Computer Science 1 students should'also look in the supplement of

additional library routines and functions provided for the class.

OTHER STANDARD LIBRARIES

Information on these is issued by the ERCC, but will not be required

by Computer Science 1 students.

-T.1 -

SECTION 7 : MORE OPERATIONS ON STRINGS

STRING RESOLUTION

This is an instruction peculiar to strings and it allows us to search a string

for the (first) occurrence of some sequence of characters. For example, suppose we

have made the assignment

S = “JOHN SMITH, 8 BLANK TERRACE, EDINBURGH. TEL 668 1212
then
S» T.(*, ").U

will assign to T a copy of the characters found in S before the first occurrence of
the expression in brgckets (i.e. comma space) and to U a copy of those after it.

S will REMAIN UNALTERED, More generally, we have on the right a sequence of
alternate string expressions in brackets and string variables. Returning to the

above,
S -» NAME.(®*, %).ADDRESS.(* TEL *). PHONE NO
will cause JOHN SMITH to be assigned to string variable NAME,

8 BLANK TERRACE, EDINBURGH. to ADDRESS
and 668 1212 to PHONE NO.

Notes

(a) The expressions in brackets may be general string expressions (variables,
constants, functions, etc.) but the string variable names which alternate with
them, and appear without brackets, may only be variables since values are to

be assigned to them,

(b) If the expression sought does not ocecur, the program is terminated with a

run-time fault,

CONDITIONS INVOLVING STRING RESOLUTION

The condition

if S<PpP.(¥*").Q then

tests to see if S can be resolved in this way. If it can, copies of the components
are assigned to P, Q and, of course, the instruction at is carried out, 1If

not, none of these events takes place.

The resolution operator { 9) is not allowed in a tuo—aideﬁ condition, Hence

if T =S P.(¥*").Q then

is invalid, but could correctly be written

i T = SLng_ S+ P.("'.)-Q then AER

TAKING A FIXED PORTION OF A STRING (FROM STRING)

- The string function FROM STRING (parameters: string name S, integer I1,J),
gives a8 its result a copy of the Ith to the Jth characters {inclusive) of the
string S§.. It LEAVES S UNALTERED, For example, if string variable p is

currently storing:
MARY QUEEN OF SCOTS
then the instruction: Q = FROM STRING (P,6,10)

will assign to Q the 5—character.atring: QUEEN

LENGTH OF A STRING | (LENGTH)

The integer function LENGTH (parameter: string name S) gives as its
result the number of characters in the string currently stored in S. Thus

with the value in P as above, an instruction:

| I = LENGTH (p)
would result in the value 19 being assigned to I,

LOOK-AHEAD IN THE DATA FILE (NEXT ITEM)

Sometimes we shall wish to 'look ahead' to see what the next character
in the data file is, without actually reading it., For example, to find out
whether or not it is safe to try to read & number with the READ routine.
(If the next character in the data is a letter, then an attempt to use READ
will cause the program to be faulted.)

The string function NEXT ITEM gives as its result & l-character string
corresponding to the next character in the data file, BUT LEAVING THAT
CHARACTER OFFICIALLY UNREAD, so that it is still there to be used again when
we give an instruction to read it officially, This function takes NO PARAMETERS.
The value of the function may be assigned to a ﬁtring variable, but rather more
frequently our idea of 'looking ahead' is to decide whether or not it is safe to

proceed, For example:
if %OY ¢ NEXT ITEM £ *9% then READ (X)
Note that although the above check is sufficient to ensure that it is safe to

use "READ", it is not always necessarily wvhat we want - the next item might be
& space or nevline, and the character AFTER THAT could still be a digit 0-9,

_713-
SPECIAL STRING CHARACTERLS.

#4%% The facilities on this page are not part of standard IMP #e##

(i) NEWLINE CHARACTERS. - (SNL }

—

If we wish to write down the string constant consisting of one

newline character, this can look a bit awkward and inelegant.

READ ITEM (S)
-i_rs=“
" then COUNT = COUNT + 1

To avoid this inelegance, we can write SNL (standing for STRING
NEW LINE) instead. Thus the above becomes:

READ ITEM (S)
if S = SNL then COUNT = COUNT + 1

(ii) SKIPPING ITEMS IN THE DATA FILE . (SKIP ITEM)
‘The routine SKIP ITEM (parsmeters NONE) simply reads a character

from the data file but makes no use of it ('throws it away') so that

the next character after it in the file is now next in line to be read.

while NEXT ITEM = " " or NEXT ITEM = SNL then SKIP ITEM

- 8.1 -

SECTI1ON 8 : NUMERICAL AND STRING EXPRESSIONS

' We have alread seen any places where integer, real and string
expressions are_written in IMP programs - on the right-hand side of
assignment instructions, in conditions and as actual parameters to routines
(wvhen parameters are calléd by value)., Integer expressions are also used
. as bounds in arrsy declarations, as array subscripts and as bounds for
cycles. String expressions can also be used between the brackets of string

resolution instructions such as: 4 . (4

While noting that in all the above cases we can use any expr-
ession of the correct type, there some cases in-the language where we are
constrained to write a constant, rather than an expression. Buch places
are ihdi_cated by in the following:

(a) As the maximum length in string declarations,

[

string (....) array PETE (M : N+1)

(b) 1In the bounds for CONST arrays (also~0HN arrays, described later).
In the list of initial values given to CONST and OWN arrays.

const integer array TABLE (.... &) ® o0y) veen p vees

- INTEGER EXPRESSIONS Consist of:
Integer variables connected by the operators:
Integer constants (e.g. 45) + -~ % J/ #% vhere * is multi-
Integer functions - plication, // division and #* jig for

exponentiation (raising to s power).

NOTE The result of integer division (using the operator //) is rounded
down. The result of 7//2 is the integer 3.

REA]L, EXPRESSIONS Consist of:
Real OR integer variables connected by any of the operators:
Real OR integer constants | + - & [/ or %%)

Real OR integer functions
NOTES (1) Real division (using /) involves no more rounding than is
necessary to match the precision available in real variables.

(2) Integer operands (variables, constants and mnctmm) may be

used in real expressions, but not vice versa,

- 8.2 -

NOTE (3) The exponentiation operator (**) raises operands to a power,

but this power must be an integer (positive or negative). Thus
_ | 3 |

X*%*3 represents X,
(4) Apart from an initial + or - sgign, all arlthmetlc operators
must appear directly between a pair of operands; two adJacent

-3 wlll have to be written as

0perators are not allowed, Thus X
** (-3) and not as X ** -3.
(5) Real constants may be in either fixed point form: 3.725

_ Y

-3

or in floating point form: 1,73283 meaning 1.732 x 10

| 1.732€-3 meaning 1,732 x 10

The constant (1 e. 3. lh159265.....) may be written in IMP
programs as PI (or » or £ or $, depending upon the particular

compiler and input device in use)

STRING EXPRESSIONS 3 Consist of':

String variables |
String constants (e.g. "MORRIS 1300")

String functions

connected by the'operator
for concatenating, which is
a full stop (.)

NOTE ON STRING CONSTANTS.

String constants are written between quotes, and maj consist
of up to 255 characters. The quotes marking the beg1n1ng and end of

the string do not form part of the string. Hence
“IHE CAT"

1s a string of length 7 (6 letters and 1 space).
- The empty or NULL string (of length 0) is of course represented

nen

by two quotes with nothlng between them, i.e.

This should not be confused with a string consisting of one or

more spaces, which might be one space

or "]

twvo spaces, etc.
Newline characters can appear in'atrings like this:
"THIS STRING IS SPREAD | .
OVER TWO LINES" |
If a quote character is required in a string, it is immediately
followed by another, to ﬁhow it 18 not a terminating marker,

"WHO SAID ""“NQ""?" 18 the way to write the string: WHO SAID "NO"?

- 8.3 -

PRECEDENCE OF ARITHMETIC OPERATORS.

If we consider the expression A+B*C we might think of evaluating it in two
vays, i.e. as (A+B)*C or as A+(B*C). It is easily seen that these do not in general
give the same value. So we have precedence rules which define the order of evaluation
in the absence of brackets. For two adjacent operators (like * and + above), the

operation of the higher precedence in the table below is carried out first.

ol (highest precedence)
* or / or //
+ or - (lowest precedence)

Where two adjacent operators are of equal precedence according to the table

the one appearing to the left in the expression to be evaluated takes precedence,

We can always use brackets to over-ride the above rules of precedence. Vhen
~1n doubt it is wise to insert brackets for safety and clarity. Extra brackets do

no harm.

The ‘'left-hand precedence' between + and - agrees with normal (mathematical)
usage, |

e.8. By A-B+C we mean (A-B}+C and not A-(B+C)

EXAMPLE MEANING
A/B*C (A/B)*C
A/(B*C) (A)/(B*c)
ARRRRQ (A**B)*C
A**(B*C) (A)**(B*C)

Note that it is necessary to bracket denominators containing more than one term.
A common mistake is to write A/2%*B when A/(2*B) is intended.

N L ING - T
MODULUS SIGNS WARN SEE BELOW

If we wish to take the absolute value of an expression, we enclose the
expression between exclamation marks. Thus
1 X-Y!

yields the (positive) difference betwveen X and Y. This operation may be applied
to either integer or real expressions, and gives a result of the same type as the

original expression,

ne HARHING #%#% This modulus operator may soon be removed from some
IMP compilers, Use MOD and IMOD instead. (Bee section 6.)

- 9.1 -

SECTION 9 : INNER BLOCKS - LOCAL AND GLOBAL VARIABLES.

Inside a program we may use an inner block., Its structure, with its local
declarations at the head, and its instructions following, is identical to that of

the main program, except that it is terminated by end instead of end of proxram. An

inner block may be regarded as a compound instruction.

bogin

declarations

a2 o v B

begin

declarations

" inner block instructions MAIN PROGRAM

instructions)

end

end of program

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

One case where thia is useful is when we require to declare an array whose

bound is not known until some part of the calculation has been completed. For example:-

begin

iggggpr N

READ(N) ;¢ N is the size of array required

begin
integer array A (1:N)

end

il ———

end of program

LOCAL AND GLOBAL VARIABLES

.-It ies important to appreciate the sphere of influence of the declarations made
"4n the inner and outer blocks,

_ A declaration appears at the head of a block and normally remains valid throughout
that block until cancelled by the gnd terminating the block. It also remains in

'.__fﬁrca upon descent to an inner block, UNIESS the same name is declared in the inner
plock. In the latter case, the variable is held in abeyance while the machine is

 q:ecuting the inner block, coming into force again when the end of the inner dblock
is reached, |

Within any particular block, we call a variable declared within that block

@ LOCAL VARIABLE while one declared in any exterior block is called a GLOBAL
 VARIABLE. |

These points are illustrated in the following example:

(i) Dbegin (il) begin

integer A integer A
A= | A=
begin begin
integer A,B,C - integer B,C
B=1 B =1
C =4 C =4
A=B+C | A=B+C
end end
WRITE (A,2) . WRITE (A,2)
end of program end of program
Here the name A refers to quite distinct Here A is global to the inner block since
" variables in the inner block and the this time A has not been re-declared. In
outer block, The WRITE instruction will this case the WRTTE instruction will print
print the value 1, ' a the value 5.

SCOPE OF VARIABLES.

It is important to realise that on leaving a block, all local variables
declared within that block are lost. Thus in the examples sbove, if the WRITE

instruction on the penultimate line had attempted to write B or C, the program
would have been faulted,

Although inner blocks will not be needed very often, the idea of local
and global variables and their scope, is most important. In the next section
on defining our own ROUTINES and FUNCTIONS, the same principle applies.

- 10.1 -

SECTION 10 3 DEFINING OUR OWN ROUTINES & FUNCTIONS
(A) ROUTINES

When designing a program to solve a problem, we first try fo decompose the
problem 1nto smaller elements. This enables us to view the structure of the program
as a whole, without initially having to bother about the fine detail of all the
steps. Also, it often turns out that essentially the same sequence of instructions
1s required in several places in the program. We may also recognise that particular
sequences may be of use in the future for similar programs. It is therefore very
convenient to be able to define our own routines, which may then be used in our

program in the same way as the library routines,

Before we can call one of our own routines in a program, we must make sure
its name, and the number and type of parameters required, is declared. This may
be done by placing a specification (gggg)among the declarations at the head of the
program, The form of the gpec is exactly as used in the discussion on library
routines, and indicates that the details of the routine will be given in a routine
block later on in the program. Alternatively, we can, in all but exceptional cases
described later, place the whole body of the routine at the head of the program,

where it may be thought of as a declaration of name, parameters and what the routiﬁe
does. The body of the routine has a structure similar to that of a main program

except that in place of begin and end of program, we have routine seeseeseses

and end. Between these we put the local declarations (if required), followed by
the instructions. For example, anyone not having access to the Computer Science 1
library routine "SWOP INTEGERS" could add it for himself by inserting four lines

as-follows:-

begin
i routine SWOP INTEGERS (integer name I,J)

integer K 1+ local variable for a copy of I
K=I;I=lI;J

K ;4 while_value of J 18 moved to I

end

L)

comment The above routine for swopping any two integers is now

comment available throughout the program to follow

integer P,Q
integer array A (1:10)

800 s e

'SWOP INTEGERS (P,Q) ;! this first routine call causes
SWOP INTEGERS (A(1),A(10)) ;! the routine shove to be carried out
tesseses | 3+ but with P and Q in place of the
tevsoses . ;¢ dummy names I and J, respectively,
end of Erosrama ;+ Becond time: A(1l) and A(10),

- 10.2 -

Note that the positioning of the routine body at the head of the program

has nothing to do with the time thé routine will be executed - the routine
will be executed when it is CALLED, that is at the line "SWOP INTEGERS (p,Q)",
In the call, we are told that the ACTUAL PARAMETERS P & Q are to be used in
place of the dummy FORMAL PARAMETERS (I and J),

Another example:

begin | ﬂ |
routine READ REAL ARRAY (real array name X, integer A,B)

! This routine reads real numbers from the dat# file into

: the real array X, from X{(A) to X(B) inclusive,
integer I
cycle I = A, 1, B
READ (X(I))
repeat

end

real array A,B (1:100), C (0:20)

READ REAL ARRAY (B, 1, 100)
READ REAL ARRAY (A,S51, 100)
READ REAL ARRAY (C, 0, 20)

‘read 100 numbers into array B.

read 50 numbers into array A.

&
L

read 21 numbers into array C.

SeOReRNERAIIOOIESRORLSY
S 6L LA 00OVPSEOLOOOLE

end of program

Note This routine is defined with a formal parameter real array name,
This means that it can only be used to act upon & real array, and
furthermore only upon a l1-dimensional real array. Unfortunately,
separate routines will have to be defined if we wish to read

a sequence of integers into an integer array, or real numbers into
& 2- or 3—dimensional array.

RETURNING FROM ROUTINES

See notes two pages on for the use of the'instruction return

~ 10.3 -

B) FUNCTIONS

These may be added at the head of the program in a manner almost identical to
that for a routine. The first line of the function indicates thé type of function
it is (integer, real or string) and since the purpose of a function is to produce
ONE VALUE to be used (e.g. in an expression), we néed a.spedial form of inatruction

to indicate when the result has been calculated. This takes the form:

I‘EBUlt = wsesve

begin

igpqger-fn LARGER OF (integer P,Q)

¢ this function finds the larger of two integer values.

if P»Q then result » P else result = Q

end

real fn LARGEST IN (real array name X, integer A,B)

: This function finds the largest member of X from X(A) to X(B), inclusi#e

integer I 3 real LARGEST

”LARGEST = X(A) - 3¢ Try this, compare all others with it
_c_ig_li I = A+1, i,.B | . ;! This assumes A¢ B, See note over page.
Af X(I)>» LARGEST then LARGEST = X(I);! On finding bigger.one, take it,
repeat |
result = LARGEST
end
integer I,J,K,L, M; real Y,Z2 ;1 MAIN PROGRAM STARTS HERE

real array A(1:100)

1 = LARGER OF (J,K) + LARGER OF (L-1,M)

2 = LARGEST IN (4,51,100)

a s 8 & &

end of prograum

- 10.4 -
'ROTES ON FUNCTIONS

(a) On reaching "result =" in a function, this result is accepted as the
value, and no further instructions in the function are performed. Hence the first

;function above could equally well be written:-

integer fn LARGER oF (integer P,Q)

if P> Q then result =
result = Q
end

;'-a'ince the line "result = Q" is only reached if the condition "P % Q" has failed.

~(b) In the second example, it is for the same reason that ve pust defer giving

_*result " until after completing the gxcle/repg .

1(¢) The second example assumes that B is strictly greater than A, If we wish
to allow for the poaaib111ty of them be1ng equal, we could add, as the first

*inatruction of the functlon.

if A =B then result = X(A)

-(d) Sincé the purpose of a function is to produce ONE VALUE, we should not want
Lto assign new values to any of the parameters durlng the course of executing the
;function. For this reason, we should expect to call all paranetera hy value,

In fact, Imp only allowa arrays to be called by name, Thia forces us to call
X as a real array name in the second function above. |

RETURNING FROM ROUTINES

"

We have seen above that we leave a function on executing the
instruction result = ,,,. , and that this need not necesaarlly arise at.
- the textual end of the function,

The event that causes the program to leave a routine may be
~either reaching the textual end of the routine

or executing the instruction return. This instruction may, like the

result = of a function, be made conditional. For example, if we have a ;
‘routine to sort an array into some order from X(A) to X(B), say, wve may wish
- to insert a conditional return at the begining to deal with the possxb111ty

that the array has only one (or even less) elelents*

if A » B then return

- 11.1 -

SECTION 11 : RECURSIVE ROUTINES AND FUNCTIONS,

To write & routine to sort an array (say, an integer array) into
ascending order by the method of 'selecting the largest', we might start

planning as follows:

(i) Find the position of the largest member of the array.

(ii) Swop this largest member with the right-hand member.

- Poaltion of the largeat
X(a) x(v)

4 _ __ A

SWOp

We now have one element (the right-hand one) in its final resting
place; it can now be disregarded and the rest of the problem is simply to
sort the remaining members of the array. Now, this is exactly the same in

nature as the original problem, but one smaller, so that'atep (iii) is:
(iii) Sort en array one smaller than the original one.

The Computer Science 1 library contains & function and a routine
to carry out steps (i) and.(ii) above. Step (iii) can be carried out by
calllng our main sorting routlne from within itself, ‘a process known as
RECURSION.

routine SELECT SORT (integer array name X, integer A,B)

integer P
| ;! Using C.S.1 special routines.
P = POS BIG INTEGER (X,A,B)" s! Find posn. of largest.
 SWOP INTEGERS (X(P),X(B)) ;! Swop it with the end one.
SELECT SORT (X,A,B-1) if A < B-1 ;! Leaving the end one
ggg . | | ;+ alone, sort the rest.

- NOTES (1) It is important to make sure that a routine or function written
recursively will not carry on calling itself indefinately. In this
case, each call on SELECT SORT acts on an array of one less elements
than in the previous call, so that it will suffice to insert a simple
condition to miag out the recursive call when the array consists of

one element (which, of course, cannot help but be in the correct order).

- 11.2 -

BOTE (2) In this case, the recﬁrsion'c&n, if we wish, easily be avoided by
using & simple cycle instead. In more complex situations, this may not

be 80 easy, and recursion can provide a great simplification in our
thinking.

- {3) The above version of the routine will fail if called with A and B
initially 'inside out', that is A > B. It is instructive to re-write
it as follows:

routine SELECT SORT (integer array name X, integer A,B)

integer P

Igpurn if A »B | ;¢ Nothing needs to be done.
P = POS BIG IHTEGERl(x,:A, B) ;! Find largest. .
SWOP INTEGERS (Xx(P), X(B)) ;! Swop it with the end one.
SELECT SORT (X, A, B-1) | ;! Sort the remainder.

RECURSIVE FUNCTIONS.

Similarly, functions may be written recursively. Consider the'
problem of finding the Highest Common Factor of two integers, P and Q, say,
using the Euclinean algorithm,

(i) Find the remainder (R);_when P is divided by Q.
(ii) If R = O, then the H.C.F. is Q.
(iii) Otherwise, we need to find the H.C.F. of Q and R.

integer fn HCF (1nteger P, Q)
1nteger R

R=P - P//Q * 3! Same as the CS1 function REM
if R = 0 then result =] The HCF required.

result = HCF (Q, R) We only reach here if R # 0
.end

w»
" -

ROTE Once agaln, our recursive function has an escape clause (if R = 0)

L0 ensure that it doea not call itself indefinately.

- 12,1 -

SECIION)2 EXTERNAL ROUTINES AND FUNCTIONS

DEFINING EXTERNAL ROUTINES AND FUNCTIONS

A file of external routines and/or functions takes the following form:

external routine A(integer array name X)

end

external routine PRINT DECODED (string(31) S)

result

end

end of filq

This file is compiled in the normal way.

After this, the routines A and PRINT DECODED
and the real function CUBE ROOT may be used in any program,

provided that program oy
contains an appr0priate

g
'external spec" (see next page) 5?
** WARNING When stored by EMAS, the names of your external routines and functions _ii
are TRUNCATED to the first 8 characters. You must take care, therefore, to avoid f%
< uging two names with the same first 8 characters. | {i
Notes (1) Unlike a main program, a file of external routines has no begin
Statement. Instead of end of program , it terminates with end of file ,
(2)

If ve require any global variables, accessible from two or more of the

routines or functions, these have to be declared as own or const variables
(see next section).

(There is a third possibility, external variables,

recommended),

described in the IMP language manual but these are not normally to be

- 12-2 -

CGALLING AN EXTERNAL ROUTINE OR FUNCTION.

To use an external routine or function in a8 program, ve give an "external spec" ~

this 18 the same as the first line ,of the routine (or functlon), with the keyword

g& Edd&dt

begin
external routine spec PRINT DECODED(string(3l) S)

external real fn spec CUBE ROOT (real X)

. real X,Y

L I

READ (X)
Y = CUBE ROOT (X)

PRINT DECODED ('%A23B!PZTR')

end'of-program

13 WARNING Be very careful that the parameters you glve for your external spec
are identical to those given for your external routine (or function). NO CHECK

18 made when the program 1is run, and if the parameter lists differ, then chaos
will usually result. ("™ADDRESS ERROR" at run-time is a likely consequence),

GLOBAL VARIABLES FOR A FILE OF EXTERNAL ROUTINES.

If we require some global varlables accessible from several external
routines in one file, it is no good declaring an ordinary variable at the
head of the file -~ being outside of a program or external routine, this would
be illegal ~ We are, however, alloved to declare either CONST or OWN variables
'at this point. See section 2(iv) for CONST and section 13 for OWN variables.
Note that it is also permissible to put & record format statement at the head
©Of a file of external routines in the same way, and the format will apply
to all the external routines.

SECTION 13 : OWN VARIABLES.

OWN variﬁblea are almost the same as CONST variables (which were
described in section 2(iv) - but avoiding the word '#ariables'_becauaé_ge
were describing things that could not be varied). Storage space for both OWN
and CONST variables is allocated and initial values are assigned when the |
program starts execution; the difference is that OWN variables can subsequently

be altered by the program,

On leaving a routine (or function or inner block), all variables
declared locally within that routine become inaccessible. However, whereas
ordinary variables then cease to exist (the space allocated to them is normally
re-used for some other purpose), OWN and CONST variables continue in existance
"behind the scenes". Thus if and when the program returns to execute this
routine on a later occasion ‘within the same run of the program, OWN and
CONST variasbles will once again become accessible and will contain the values
left there at the end of the previous visit to the routine.. Note that the

initial value given with the declaration of OWN variables is assigned once;

and once only, each time the program is run.

routine ANYTHING

own,intggér I =0
I=1+1 |

Like any other local variable, I is of course only accessible from
within the routine (or from within any-routine/function/block embedded within
the routine). When the program starts, 1 takes the initial value 0, as in the
declaration. On reaching the instruction I = I + 1 - for the first time, I
will increase to 1. Assuming that none of the later instructions within the
- routine alters I, it will still be 1 on leaving the routine; thus on enterlng
the routine the next time, I will start with the value 1 and immediately be
increased by 1 to 2. Thus I will always be storing an integer corresponding
to the number of times the routine has been entered. (Note that it will be
the number of times the routine has been entered since we started this
present run of.the program - the fact that we ran it several times earlier

to-day has no bearing.)

Note An OHN variable declared at the head of a file of external routines

may be accessed from wlthln ﬁny of then,

- 1h,1 -

SECTION 14 : BYTE INTEGERS, SHORT INTEGERS, LONG REALS

BYTE INTEGERS, SHORT INTEGERS

To economise in storage it is sometimes convenient to declare:

short integer I ;+ occupies 2 bytes (16 bits).
3+ range of values stored: -32768 to +32767.

byte integer J 3¢ occuples 1 byte (8 bits),
| ;¢ range of values stored: O to 255.

(1) Although short integers are seldom used, byte integers are useful for

storing symbols. See section 18.

(2) Short integers and byte integers may be used in any integer expression.

(3) The velue of an integer expression (including normal integer varlables)

| may be assigned to a short or byte integer, provided the vulue obta1ned lies

in the ranges given above, -

(4) ** YARNING. Short or byte integer variables may not be used as the

control variable for cycles.

(5) Arrays may be declared in the obvious vay :

short integer array A(0:999)

byte integer array B(1:2000)

(6). Name-type or value~type parameters t0 routines may be of type short
1nteger or byte 1nteger.

LONG REALS

long real X,Y 3! each occupies 8 bytes (64 bits).

long real array Z{-1000:1000)

Long real variables can store the same range of values as real ?arlables but to

& sreater preclslon (between 1U and 15 decimal digits instead of between 6 and T)

If the special statement reals long is placed at the head of a program:

reals long
begin
this has the effect of turning all declarations and parameters of type

'reul into the corresponding onei of type long real (Cnlputer Science 1
~ 8tudents need not do this, as it is inserted for them sutomatically.)

- 15.1 -

SECTION 15 : RECORD VARIABLES.

Suppose that we wish to store the following data about some

children:
(a) Name - Up to 30 characters. Use a string(30).
(b) Age in months ~ A byte integer will serve {Max. value = 255).
(c) Height in inches - Kept to nearest 0.1". We need a real.

It will be convenient if we can store these three pieces of infor-
mation in one variable, which can be manipulated as a whole. For this we

need to define a new type of variable, known as & record, To define a new

type of variable, we first give a record format ; having done that, we are

able to declare scalars and arrays as follows:~-

record format BABY (string(30) NAME, byte integer AGE, real HEIGHT)

- record R1, R2 (BABY)
record arrqxiKID (1:100) (BABY)

‘Because they have been declared as of type BABY,.recorda H1, R2 and
all elements of record array KID consist of 36 bytes, like this:

NAME field | AGE field HEIGHT field

(1430 bytes) {1 byte) (4 bytes)

A complete record is referred to by its name (e.g. R2 or KID(12)}).
A331gnments to complete records must have on the rlght-hand side either

another record of the same format, or O, For example.

R2 = KID(13) ;! All fields of KID(13) are copied to R2.
Rl =0 ;! All fields of Rl are set to O (for numerical
;' fields) or to the null string (string fields).

- Individual fields may be referred to separately, as shown on the

'next page.

-

- 15.2 -

EZELDS WITHIN RECORDS.

To refer to an individual field, we give the name of the whole

record, followed by the underlinc character (_) and the name of the fieid

required,
'R1_NAME is the NAME field of record Rl. It can be treated as any
other string variable, For example:
PRINT STRING (Rl _NAME)
Rl NAME = "A.B, SMITH" - :
R2 HEIGHT is the HEIGHT field of record R2. It can be treated as any
other real variable. | For example:
R2_HEIGHT = R2_HEIGHT + 2.5
KID(3)_AGE 'is the AGE field of record KID(3). It can be treated as

any other byte integer variable. For example:

KID(3) AGE = R2 AGE
WRITE(KID(3) AGE,3)

ARRAY FIELDS WITHIN RECORDS.

Suppose that we wish to store records, each containing (&) the name
of a student and (b) an array of his marks in each of 12 examinations. A

suitable set of declarations might be:

begin |
record format STUDENT (string(30) NAME, integer array MARK(1:12))

record array CS1 (1:200) (STUDENT)
record A,B (STUDENT)

We can now refer either to a whole record (e.g. A or CS1(34)),
or to the MARK field (which is an integer array)'or to an individual
element of of a MARK array.

A _MARK is an integer array, giving the twelve marks stored in
record A. It canrbe treated ‘as any other integer array,
for exanplé, it can be passed as a pnrnnetér“to & sorting

routine:

SORT INTEGER ARRAY (A MARK,1,12)

CS1(I) MARK(J) is an integer variable, giving the mark in the Jth exam
of the student whose record is in csi1(1).

- 151-3 -

RECORDS AS PARAMETERS PASSED TO ROUTINES/FUNCTIONS.

Records and record arrays passed as parameters to routines or
functions may only be phssed by name. 1In addition, each such parameter must
be followed by a record spec statement, indicating what type of record it is.
In the following example, note that the one record format statement at the
begining of the program is val1d within both the routlnea that follow it,
in accordance with the normal scope rules. It is also valld for the

declaration at the start of the main program.

begin L | |
record format BABY (string(30) NAME, byte integer AGE, real HEIGHT)

routine SWOP RECORDS (record name X,Y)

record spec X (BABY) ;! Note that.ﬁnfortunately, a separate spec

record spec Y (BABY) ;! statement is needed for each parameter,

record Z (BABY) ;! A dump variable, needed as usual,

L =X X=Y ;, Y=2

‘end

routine SORT RECORD ARRAY (record array name R, integer A,B)

record spec R (BABY) . ;! Takes same form as for scalars above.

integer 1

i cycle I = A 1,B-1
if R(I) HEIGHT > R{1+1) HEIGHT then SWOP RECORDS (R(T) R(I+1))

reEeat

SORT RECORD ARRAY (R,A,B-1) if B-1 > A

- end

MAIN PROGRAM STARTS HERE

record array KID (1:1000) (BABY)
record P,Q (BABY)

ete. ete,

- 16.1 -

SECTION 16.

ROUTINES/FUNCTIONS AS PARAMETERS

Suppose that we wish to have one routine that will print a table of square roots,
cube roots or cosines, etc. as required. We clearly need the name of the required

functionto be passed as a parameter, for example:-

TABULATE (SQ RT)
TABULATE (CUBE RT)
TABULATE (COS)

In another case, we might wish to write a routine that would see how long some
nominated sorting routine took to sort an array of 100 random numbers. In this case,

a youtine would need to be passed as a parameter, For example:-

TIME SORTING BY (QUICKSORT)
TIME SORTING BY (BUBBLESORT)

. In a realistic example we should almost certainly need some further parameters
(e.g. a string to be printed as a heading for the table, the gize of the table to be
printed, or of the array to be sorted, etc., etc,). For clarity, however, these will

be omitted in the exaﬁples below,

The routine/function is passed as a parameter in a fairly natural way, except

thit one extra statement is needed: if the function or routiiie being passed as
parameter has the formal name F, we need a "spec" statement to say what parameter(s)
F itgelf takes. And, of course, the actual functions used (e.g. sq.RT CUBE RT COS

in the above) will have to conform.

routine TABULATE (reai.zg F) _
spec F (real X) - 3! The actual function passed as

;¢ parameter must conform to this and

integer I ;! take just one real value parameter.

cycle I =0, 1, 10
NEWLINE ;! Tabulates the function F(I) for
WRITE (I1,2) ;! I=0,1,2,10.
PRINT (F(I),k, k)
repeat
~ NEWLINES(2)

end

- 16,2 -

An example of a ROUTINE passed as a parameter to a routine:-

routine TIME SORTING BY (routine ANYSORT)

spec ANYSORT (integer array name X, integer A,B)

integer array P (1:100) 3+ OStores the numbers to be sorted,
integer I |
real T ;¢ To measure the time taken,
cycle I =1, 1, 100 ' Fill an array with 100 random
P(I) = RANDOM INTEGER ;! numbers, using the function from.
repeat | ;! the CS1 library.
= CPU TIME
ANYSORT (P, 1, 100) 3¢ ANYSORT is the dummy name for any

PRINT (CPU TIME - T, 3 3) ;! sorting routine, whose actusl name

——r—

end | - ;! will be given when the routine is called.

MINOR NOTE.

i

In the example on the preV1ous page, the rout1ne TABULATE requlres

as actual parameter a real function. In fact, the standard functions SQ RT

and COS are defined as long real functions. Although this distinction has

been irrelevant to us so far, it is significant when a function 18 passed as
‘a parameter, If we require to pass any of the long real standard functions to
our TABULATE routine, a simple way to reconcile the parameters is to place the

special statement reals long at the head of each program or file of external

routines concerned. This has the effect of turning all declarations and

parameters of type real into the correspanding long real types. In fact,

this is done automatically for Computer Science 1 students.

"'17.1 —

SECTION 17 : INPUT AND OQUTPUT STREAMS.

In all our discussion so far, we have'assumed that all the data
being read by our input routines (READ, READ STRING, etc.) comes in one
?TREAH.from Just one file (or input device); and similarly that all our out-
%ut is sent in one stream to just one file (or output device). Depending
@pon the computer we are using and the operating mode, there will be DEFAULT
OPTIOHS which, in the absence of instruétions to the contrary from the
'program, determine the devices to be used for the input nnd‘output streams.
These, and the methods of over-riding them, are not part of our IMP program
and do not concern us here. However, we may wish to include instructions
iin our program to arrange for input data to be taken from two or more
?ﬁifferent streams (coming from different files/devices), or to send our
;ﬁtput to two or more streams {being stored or printed bn different files/
ﬁevices). To arrange for this, we use the routines SELECT INPUT and
$ELECT OUTPUT, which both take an integer value as pﬁrametér.

begin
real X
READ (X) ;! This comes from the default inpﬂt
oo nn e +! 8Btream, as ho instructions to the
Cerenene ;! contrary have been given.

SELECT INPUT(2) ;' From now on, until changed again,
READ (X) ;¢ input comes from STREAM 2,

a " " & F AR

end of program

NOTES (1) Output streams are selected in just the same way with the
| routine SELECT OUTPUT.

(2) Computer Science 1 students can choose stream as follows:

For input: Input stream 1, 2, 3 or 0. (Input O is the console).

For 6utput: Output stream 1, 2, 3 or 0. (Output O is the console).

(3) Other users will have to use one set of numbers for input

streams and a different set for output streams.

(L) ®* WARNING ** Both input and output streams are buffered line

| by line. Unfortunately, when we select a nev stream ve lose any
data remalning in any half-read line on the old input stream. A
subsequent re-selection of the 0ld stream will resume reading at
the beginning of the following line. On calling SELECT QUTPUT, any

half-complete line on the 0ld stream is terminated with a nevline,

- 18.1 -

SECTION 18 : SYMBOLS

String variables, functions, etc,, are designed to facilitate
operations upon non-numerical gquantities. However, they suffer from the incon-
venient limitation of having a maximum length of 255 characters, Moreover, to

access an individual character (say the Tth) of string S, we have to use the

unueildy function
T = FROM STRING (S, 7, T)

We can, of course, store information in an array of l-character

strings:

string (1) array S(1:1000)

but if we are going to have to store our non-numerical characters in one-
character units anyway, there is the alternativelﬂf storing them as what are
known as SYMBOLS. This 1s more economical in storage than using one-character
strings, but denies the facilities of concatenation and resclution. Each
sjmbol 15 regarded as equivalent to an integer in the range 0O - 127, and thus

Symbols can be stored in integer or, for economy of storage, byte integer

variables., Corresponding to the routines and functions 8o far considered
- for input and output of strings, we have equivalent ones for operating

on symbols being stored as integers.

string (1) §, T, U integer I, J, K

READ.ITEM (s) | READ SYMBOL (I)

T = NEXT ITEM J = NEXT SYMBOL
** U = NEXT SIG ITEM ¥% K = NEXT SIG SYMBOL
** SKIP ITEM | SKIP SYMBOL

PRINT STRING {(S) PRINT SYMBOL (1)

PRINT STRING ("Q") PRINT SYMBOL ('Q')

U = "aA" N | K = 'A!

if "A" & S § "Z" then ... if 'A' € 1§ 'Z' then ...
if S = SNL then ... if I = NL ‘then ...
k if S # SEM then ... " if I ¥ EM then ...

Eg&gg (1) = indicatés facilities that are not part of standard IMP.
(2) Constant symbols are written single primes; constant strings
are written between double primes (quotation marks) as shown
in the examples above.

(3) The integers I,J,K above could , for economy of storage, have been

declared as byte integers.

- 18.2 -

CONVERSION BETWEEN ONE-CHARACTER STRINGS AND SYMBOLS.

string fn spec TO STRING (integer N)

integer fn spec CHAR NO (string name S, integer I)

TO STRING takes the symbol whose equivalent numerical
value 18 N, and gives asg itﬁ result the same character, \in the
form of a l-character string. | |

CHAR NO does the -"inverse: 1t takes the Ith character of

string S and gives as its result the same character as a symbol.

Examples of use.

integer I1,J ; string (1) 8 ; string(10) T

I = CHAR NO (T,3) : I now stores a symbol

S = TO STRING (J) d

'S now stores a l-character string

Note

From its name, one might expect that FROM STRING would be the
inverse of TO STRING , but it is in fact a quite different thing. (FROM
STRING copies a part of a string to form another string).

ARITHMETIC RELATIONSHIPS BETWEEN SYMBOLS.

Although we do not normally need to know what numerical values
correspond to different symbols, it is useful to knov that successive letters
‘of the alphabet correspond to successive integers. Since symbols are
?%tored in integer, or byte integer, variables, we can carry out addition

tnd subtraction operations to convert from one letter to another. Thus:

the expression 'A' + 1 gives 'B

the expression 'Y' + 1 gives 2

- 18.3 -

One .case where this property is useful is in the declaration of an array whose

subscripts can be written as symbols.

integer array COUNTER ('A':'Z')

This would be the natural declaration if we wished to count the frequency of occurrence
of the different letters of the alphabet in a piece of text. Another natural use

would be to cycle from 'A' to 'Z' setting these counters to 0.

cycle 1 = 'A',1,'Z!
COUNTER (i) = O

repeat

LOWER CASE LETTERS

Lower case letters (a,b,....z) can also appear as symbols. They have different
numerical values from those of upper case letters, but are themselves ordered in the

natural way., Thus;

the expression 'a' + 1 gives 'b'

the expression 'w' + 1 gives 'x'

CONVERSION BETWEEN UPPER AND LOWER CASE

Because of the above relationships, it is clear that:

the difference between 'A' and 'a'
is the same as the difference between 'B' and 'b'

and as the difference between 'Z2' and 'z'.

If, therefore, an integer I stores an upper case letter as a symbol,

then the corresponding lower case symbol is given by: |
' I + Ial‘ - 'Al.

For example, we might write:

if 'A' < I < 'Z' then I =1 + 'a' - 'A!

- 18.4 -

ERAMPLE Counting the letter frequency in one sentence of text. In order to count
upper and lower case letters together, we first convert all lover case letters into
corresponding upper case letters.

begin
integer array COUNT ('A':'Z') | 3! for counting letters

integer I

cycle I = 'A', 1, '2! | 3! initialise counters
COUNT{1) = O

repeat

cycle
READ SYMBOL (I}

if I = ',' then exit 3¢ sentence ends on a full stop

convert lower case to upper

-
-y
® /
LY
[)
Y
N-
o+
I::
m
o |
[o |
N
[o |
4
e
!
o
ws
i

if 'A' € I € '2' then COUNT(I)=COUNT(I)+l ;! increment corresponding
repeat | | 3% counters.
cycle I = 'A' 1, '2! s+ tabulate results,

NEWLINE
PRINT SYMBOL(1I)
WRITE (COUNT(I), 6)

repeat
NEWLINE

end of program

HU@ CAL VALUE OF THE DIGITS 0-9

Rather unfortunately, the "numerical value” of the symbol '2' is not the decimal

integer 2, However, the usual relationship holds:-
the expression 'O' + 1 gives the symbol 'l'
the expression '0O' + 9 gives the symbol '9'

-Thus if ve have an integer variable holding an .integer known to lie in the range
0f9gtve can get the corresponding symbol by adding 'O°. |

integer I,J
I =7 | ;! I stores the integer 7.
J =1+ ' ++ J stores the symbol 7. |

- 19.1 -

SECTION 19 : POINTER VARIABLES.

Suppose that we have a routine

routine A (integer P, integer name Q)

then on entry to the routine, we assign to P the value of the actual parameter
given, but place in Q a POINTER to the actual parameter corresponding. When-
ever the -routine refers to Q, we actually use the location to which Q 1is

pointing. In a rather similar way, we can declare POINTER variables (integer

name, real name, record name, etc., and also integer array name, string

array name etc.),

begin
integer array A (1:100,1:100)

integer name Q ;! & POINTER variable

Q can now be made to point to any integer variable {say, A(I,J+3)) by
Q== A(I, J+3)
Q is now synonymous with A(I, J+3), and provides a concise may of writing it.

Q@=Q+1 unless Q =0

1s a more concise way of writing the same instruction with A(I, J+3) and it
also saves the program from having to evaluate the address of the same two-

dimensional array element three times in rapid succession,

NOTES (1) It is clearly necessary to make Q point to an integer location

(using @ = = ,,.) before it is meaningful to make an ordinary assign-
ment (@ = ..,..).

(2) An example of both a record name and an array name is:

begin
record format STUDENT(str1n5(3O) NAME, integer array MARK(1:1:
record array CS1 (1:200) (STUDENT)

~record name R (STUDENT)

integer array name M

R
M

= CS1 (14) ;! R is short for the lith record,
= €81 (I) _ MARK ;! M is an integer array

3! M(6) is an integer

_a).l..

SECTION 20 : MAPPING FUNCTIONS.

Mapping functions have some features similar to those of pointer variables,

4n that they allow us to define how a whole set of "alternative names®™ are to
Ye allocated to certain variables. |

As a practical example, note that some IMP compilers only allow us to
declare l-dimensional arrays. In such cases, we are generally able to obtain the
:nonvenlenca of 2-dimensional arraya by declaring a 1-dimensional arrqy and
snllocating Locond names by means of a mapping function.

A(0) A(1) a(2) A(3) A(4) A(5) A(s) A(7)

B(0o,0) B(0,1) B(0,2) 8(0,3) B(1,00 B(1,1) B(1,2) B(1,3)

real array A(Of?)
real map B(integer I,J)

result = = A (L*I + J) ;¢ NOTE: use the = = gign, as |
end | ;! with pointer variables. el

Any reference to.B(!,j), for example, will cause an entry to the mapping
function B; this will evaluate the resulting address you want to use, namely
“the same as the address of A(4*1+3)", which is A(7).

EE&EE,(1) Other typea of EQE.(gigiﬂg;mgg, integer map, etc.) are written in

a similar fashion,

(2) A map has the same structure as a function, except thaf the
instruction that causes the calculation to cease is result = = , rather
than result = . The right-hand side of this result instruction must be

somethlng that gives the address of a variable of the correct type. (i.o.
8 string variable for a string map, etc.)

(3) Since the result of a map is the address of the variable you want

the map may (unlike a function) be used on the left as well as the right-
hand side of an assignment. For example:

B(1,0) = B(1,0) + 3

(4) Since each reference to B involves executing the body of the

mapping function, it is somewhat slow.

- 21.1 -

SECTION 21 : JUMPS, LABELS AND SWITCHES
-——'-_————-—————-—-——_——a__.________________—_

In earlier sections, a number of methods have been described for controlling

the order in which instructions are executed, These have involved:

(i) if then else
(ii) start & finish

- (iii) while ..eveness

(iv) wuntil

(v) cycle & repeat

(vi) exit, stop, return, result =

In a well-structured program, these will suffice for nearly all purposes,
If we wish to make a test to determine which of two alternative paths is to be

followed, then "if ..., then else ,...", together with "start & finish"

will be quite convenient, If we have more than two possible routes, however,
wve can be forced into testing on a succession of conditions. To avoid great

inefficiency, we shall probably need nested start / finish groups, and this can

soon become cumbersome,

Suppose the following program-structure 1s required. (Only three possible

routes are shown, for simplicity, but there could of course be many more.)

(A)

value of I + J
?

(r)

- 21,2 -

To meet this requirement, we need the following:-

(i) At point (A), to be able to choose between going to one of points

(B), (C) or (D). If the choice involves testing for the value of an
integer expression, one convenient way of doing this is to use a
SWITCH JUMP,

(ii) Having divided into three (or more) paths, a properly structured

program will normally require to merge again, to point (E), say.
This can be achieved with SIMPLE JUMP instructions. Being simpler,

these will be described first.

JUMPS TO SIMPLE LABELS

Jump instructions meaning
->» L2 JUMP TO the label L2, That is, instead of

going on to the next instruction in sequence,
break off from here and resume from the statement
labelled L2,

Simple labels

L2: NEWPAGE The simple label, L2 say, is followed by a colon
PRINT STRING(* ... %) and placed on the left of the statement from which
etc, ve wish to resume execution,
Notes (1) A simple label can be any legal Imp name. Such names do NOT have to

(2)

(3)

(k)

(5)

be declared. (But see next paragraph for switch label names that do.)

The label can come either earlier or later in the program text than

the corresponding jump instruction {i.e. we can jump either forwards

or backwards), but both must be within the same routine, function or block,
Owing to the high risk of introducing errors that can be very hard to
locate, jump instructions should NEVER be used when any of the methods
listed at the top of the page would be applicable in a convenient waY,

As an alternative to a name, it is possible vith some Imp compilers to

use a positive integer as s label. |

The arrov () is printed with a "minus" and "greater than" sign,

-21.3 -~

SIMPLE JUMP INSTRUCTIONS (WITH CONDITION)

if N = 0 then -> L2 This 1s exactly the same as the previous

READ (X) | example, except that the jump only takes place
if N = 0. Othervise the program naturally
continues with the next instruction, say

READ (X).

JUMPS TO SWITCH LABELS

If we wish to be able to jump to one of many points in the current block,
depending upon the value of an integer expression (I+J, say), then we must DECLARE
(in the usual place at the head of the routine, function or block) an array of
labels, For example:

switch 5(6:10)
and the Jjump 1s written

-> S (I+J)
and the labels are T~

S(6): cveens

The structure of the program to implement the flow diagram given earlier

would now be like this:

switch S (6:10) ;¢ & declaration of labels S(6) to S(10)

:;.;.(I+J) i evaluate I+J and jump to correct label
S(6): vuvee 14 start here if I+J=6

:;.;;9 s+ NOTE THIS IS USUALLY WANTED #%#xs
S(T): eeeus ;! start here if I+J=7 |

> 158
S{10):.4... ;¢ and here if I#J=10

L99: ;¢ all routes meet together again here

LA BN I

- 21,4k -

Some notes on SWITCH LABELS

(1)

(2)

(3)

(4)

As with simple jumps, the jump instruction and all the
corresponding labels must be inside the same block, routine
or function, In addition, the switch declaration must

also be in the same block, routine or function., That is,

there is no possibility of using a "global”™ switch name,

The bounds of the switch declaration nuﬁt be CONSTANTS,

Hence
switch S (M:N)

would be invalid.

It is not necessary for all the label; in the range declared
to appear in the program. For example, S(8) and 8(9) do

not appear in our example above. On the other hand, if, in
that example, I+J were to evaluate to 8 or 9 upon reaching
the switch jump, then a run-time fault would naturally occur.

Without the => L99 jumps, our example would have resulted

in the program running on from the instructions at S(6) _'
to continue vith those that follow labels S(7) and S(10).
This is not the structure normally required. No such
jump was needed at the end of the instructions at 8(10),

since label L99: was on the next line anyway.

- A.l -

APPENDIX A

Preparing IMP Programs on Card Punches and On-Line Consoles

Certain symbols used in the written version of the language are not available

6n card punches and On-Line Consoles. Special conventions must be adopted as

follows:

(1) Keywords

(a) Keywords (begin, end, etc) are punched with a % character immediately
preceding the letters. The word must then be separated from other symbols

by something other than a letter,
Ho spaces are permitted within one keyword, but, integer array name may for

example be regarded as one or three keywords and hence may be punched

as FINTEGER %#ARRAY TNAME
~or FINTEGERARRAYNAME

(b) The %-aymbol acts as a shift character denoting that the gequence of

letters immediately following are to be interpreted as keyword letters. 1t

is cancelled by anything which is not a letter.

(2) Use of Spaces

Within the program (but not always within Job Control or data) spaces may be
inserted anywhere on a line to improve legibility, Such spaces are disregarded by

‘the compiler except that

(a) A space marks the end of the 'underlining' in keywords.
(b) Certain sequences of characters, known as STRINGS, are indicated
by placing them between quote characters ("), Between quotes, spaces DO

count, 80 that
"THE CAT"

is a string of length 7 (six letters and one space).

(3) String conventions on card input.

Anyone inputting IMP programs on cards should check on the current
conventions regarding quotation marks. In many cases, the quote character
on cards is taken to mean that the previous character is to be disregarded.
If such a convention is still in force, quote marks must obviously not be
used to delimit strings. In these cases, the single prime (') is used instead.
Example:
'THE CAT"

{4) Maximum iength of line

Lines of program and data should be limited to 72 characters, as the 73rd
and later characters will be disregarded. Most consoles only print 72 characters
on a line, so you normally see when information is going to be lost. Beware,
however, when using cards as they can take up to 80 characters - although the
card punches can and should be set to prevent you going beyond column 72,

(5) Continuation onto a further line (program only)

Normally, each instruction in a program will be written on a separate line.
However, long instructions or declarations may be continued onto a second (or
further) line by punching %C before reaching the 72nd position on the line. This

facility is available in program only, not within Job Control cards, nor data.
Its chief use is for punching long instructions of more than 72 characters.

(6) Composite characters

Certain composite characters have to be represented by a pair of

characters as follows:-

is represented by the two characters » =
is represented by the two characters & =
is represented by the two characters =)»

TR R

is represented by the two characters <«-

(T) Characters not available on card punches and some consoles

If the input kgyboard does not have the following characters, they are

represented as follows:—

is input as g
w is input as £ or $

~ is input as =

- B.l -

APPENDIX B - Notes on Fault Finding.
1. COMPILE TIME FAULTS.

(a) Recognised (numbered) Faults.

If the compiler recognises what appears to be the intended syntactical

structure of a statement, but detects a violation of some rule of the language,
a fault number and a short message describing the nature of the vioclation will
be printed out. The message normally gives enough information for us to identify
the fault, There are two possible messages that are worthy of further comment

here,
(1) FAULT 108 (EM CHAR IN STMNT) DISASTER

This means "End-of-message character in statement", and arises when
the“compilér reaches the end of the source file without recognising our

end of program. We may have mis-spelt it, omitted it. This fault can also

arise if we try to compile an empty or non—existent file.

(ii) FAULT 19 (WRONG NUMBER OF PARAMETERS)

This can mean either the wrong number of parameters given for a routine
or the wrong number of subscripts given for an array access,

Either of these can sometimes occur through the omission of & comma in,

for example, 'PRINT (X+Y, 3 5) since spaces do not count in program, and the

3 5 will be mistaken for 35 decimal digits being demanded before the decimal point.

(t) Syntax Faults.

This means that the compiler has encountered a statement which does not

conform to any of the acceptable syntactical structures, To the human, the fault

often appears ridiculously trivial., For example:-

too few closing brackets: READ (A(N)

excess of commas: real X,Y,Z,

(c) Side-effects of earlier faults,

Example 1: cyclee I=1, 1, 10
repeat
Here the first line will be faulted for syntax (faulty spelling of cycle).

As a consequence, the compiler will be unaware of our intention to start a cycle

and will find a spurious fault:

FAULT 1 (REPEAT TOO MANY)

"B.E-

Example 2: reall TOTAL
TOTAL = O

Here the first line has a syntax fault and so the declaration will not be
acknowledged. Hence the second line will be faulted for "name not declared". In
in attenpt to avoid the same fault message each'subﬁp;ﬁé;t time you use TOTAL, the
compiler will declare "TOTAL" for you, Unfortunatéif?it will guess you intended
it as an integer and subsequent attempt to assign a rea1 value (0.7) to a supposedly
integer variable will cause yet another spurious fanlt (Real éuantity used in

integer expreaaion.).

2. RUN TIME FAULTS.
If your program fails at run time, you will receive the message
MONITOR ENTERED FROM. IMP:

The MONITOR will then proceed to givé yoﬁﬁhgﬁgfﬁi'valuable items of

diagnostic information, as follows

(i) A message briefly describing the type of fault. Some notes on

interpréting these messages 18 givehfbh"ihe next page. (B,3)

(ii) The line number in your program where the failure occurred. ALWAYS
IDENTIFY THIS ON YOUR PROGRAM LISTING., - |

(iii) A list of the scalar variables in force at the time of failure,
and the values stored in them, if any, (@rraya are not printed,

as they are liable to be large, and hencé'tiie—cohsqning to print.)

DO NOT RUSH to alter your program until you have made use of the above
information to discover why it went wrong. If the cause of the failure
does not come easily, it often helps to vork through pu}t'df'the program
vith pencil and paper, writing down the values you would expect to be

stored in the different variables at each stage of the computation.

- B.3 -
RUN~-TIME FAULTS (continued)

It ﬁay be useful to give the following few notes in explanation of the

run-time fault meusages. For further details, see the "Edinburgh IMP Language

Manual"™, section 13,

(1) ARRAY BOUND FAULT 21
Attempt to use A(21) when array A was declared only (1:20), for example.
(ii) INPUT ENDED

You have tried to read more data (using READ, READ STRING, etc)
than you provided in the data file, This is often caused by getting the

program into an unintentional loop.

(1ii) UNASSIGNED VARIARLE

You have tried to use the contents of a variable which has had nothing

put in it.
(iv) SYMBOL IN DATA 'R’

While trying to read a number, you have come across a symbol which

cannot form part of a number, for example: R.
(v) ILLEGAL CYCLE

You have tried to start a cycle with control variable which will

never terminate e.g.

cycle I = 2,K,10

where K = 3,
(vi) CAPACITY EXCEEDED

The string you are trying to assign is longer than the maximum lencth

declared for this variable,
(vii) NOT ENOUGH STORE

You are trying to use more of the store than is available to you.

Note that multi-dimensional arrays run away with a lot of space.
(viii) DIVIDE ERROR

Usually & division by zero,

	1 Introduction
	2 Declarations

