ke S

 ‘PROGRAMMING IN ATLAS AUTOCODE

COMPUTER UNIT REPORT No. |
by P.D. Schofield and M.R. Osborne o
(Revised Edition) | 28th June 1965

()
PREFACE

This is & revised version of Computer Unit Report Ne, i,
which was originally issued on 3rd, Mar, 1gb4, The revision was
undertaken not only to improve the text, but also to take account of
such chenging circumstances as

(i)} Changes in the compilers available on Atlas,
(ii) The writing of the Edinburgh University Atlas Autocode

compiler which has made Atlas Autocode available also on the K,D,F,0,

This bock is intended to serve as an introduction to the
Atlas Autocode programming language, It is based on courses of
lectures given at Edinburgh University, and deseribes a version of

the language acceptable to g1l current Atlas Autocode compilers,

For a complete beginner, the following should prove

suitable for a first reading:-

Chapters 1 - 5 {But see note on page 27 and omit any
parts of pages 40, 438 which cause the
reader trouble),

Chapter 8 {pages 80-91, Theso may bo read any
time after page 44).

We should point out that our exemples are chosen to
illustrate points of the language: we do not claim that the

fochniques used are in any sense the best poasible,

We should be glad to hear from anyone who discovers or

sugpects any errors,

In meking this rovision, wo have bonefitted considerably
from discussions with our colleague Mr, Harry Whitfield, wha

led the toam writing the Edinburgh University compiler,
Our thanks arc due to Mrs, Jackie Snashall and Miss

Isabel Fraser who bore the burden of re~typing and to Mr, Brian Read

who compiled the index and produced some of the diagrams,

P,D, SCHOFIELD M.R. OSEORNE

28th June 1965,

(ii)

CHAPTER 1

CHAPTER 2

CHAPTER 3

CHAPTER 4

CHAPTER 5

CHAPTER &

CHAPTER 7

CHAPTER 8

INDEX

{iii)

TARLE OF CONTENTS

INTRODUCTION

BASIC NUMERICAL OPERATIONS

BASIC SYMBOL CPERATIONS
EXPRESSIONS, CYCLES, FURTHER ARRAYS
BLOCK STRUCTURE

EOUTINES AND FUNCTICNS

HORE ADVANCED FACIL;TIES

CENERAL TOPICS

ages
1 - 12
13 - 26
27 - 34
35 - 52
53 = 6o
61 - 72
73 - B2

83 - g1

1,

CHAPTER 1 : INTRODUCTION

Stages invelved in using a Computer,
A simple view of the Computer,
Information which must be suppled to the Computer,

Analysis of s very eimple problem,

2.

3.

PROGRAMMING TN 1TLAS AUTOCODE

This hook 1s intended for those who wish to learn to wrife programs

in Atlas Autocode, a language available on both Atlas and KDFQ computers,

A program censists of a detailed set of instructions to the computer,
explaining exactly how it is to solve a certain problem, It therefore

follows that the programmer must firstis

(a) Formulate the problem and decide on the method to be used to
obtain a solution. Only then can he

(b) Write a program describing the method already choson,

Although this book is mostly devoted to describing process (b), it
must be emphasised that, in any moderately large problem, it is
brocess {a) which contributes most to the success or failure_of 2

project,

Two general suggestions can be made about this planning stage.
Firstly it often pays to draw a 'flow diagram' to help plan the logieal
connectione betweon different parts of the program, The roader will
- find many examples of flow diagrams in the subsequent pages. Secondly,
' considerable effort and money can often be saved byrseeking, at the
- . earliest possible stage, the advice of someone who has successfully

completed a similar project,

Figure 1 uses the formalism of 2 flow diagram to indicate the steps

involved in iising a computer to solwve a problem,

Formulate the problem

~p

r_Design a method of.

solving the problem

\j’ "f-ijh E _ 4"’Revise method

of ‘solution

y/’_ will
this method make
efficient usé of the com
"puter and solve the problem
in a practicable length
cf tine
?
\\\\gh/////
Yes

L
, Write program i

0~

N

" |Dest program and/or parts
of program on special

simple cases whose Py

solution is known

////;re . Find out what

/ answersf\L .] 18- wrong and

correct —To '} modify program
2

J Use program on
{ main problem

\+,

Store program
for future use

-~ , :

S

5.

THE _COMPUTER

The basic operation of the computer ‘is most easily

- "understood from the following simplified (and partly fietitious)
diggram: - '
Fig, 2
STORE
743
- MILL
b8 ; (works out
3P expressions)
Ace of Spades -

King of Hearts .
A 7 .

Tnput ;‘ Output

The STORE consists of a large number of locations ip which
information can be deposited,: Depending upon the way in: which tbe .V
' machihe s being used, this information may be thought of as nuﬁﬁe;s,:
values of playing ‘cards, lotters etc, Same of the store also contains

“instructions which tell the computer what to do next,

The MILL is a place into which the machine copies piecas_of
information from tﬁéwstore and works out expressions depending upoﬁ this
information,

'é.g."(i) cdpy'the first two numbers from the store and multip;y them,
(2) copy the two pards in locations 4 and 5, and find the
R : 7 higher-ranking, : ‘
' ' When an expression has been worked out, it cen either be printed oﬁt

e a8 an answer, or replaced in the store for use later,

6.

Moving information in or cut of a location in the store is in
some ways similar to the oporatich of a tape recorder, When withdrawing
informaticon ('reading'), we take a copy of the contents of the location,
The original information is still thers, ond can be used sgain as often
as required, Whon putting infdrmafion in‘(’writing‘) the previous contents

of that location are destroyed.

Warning : If werread the contents of a location before putting anything
in, we are in danger of obtaining whatever was left bohind at the end of

the previous program,

INETT |
When we wish to use the computer, we normally need to foed in
two 'documents’ (1) Program

(2) Dbata

The difference botween the two is shown by the two oxamples bolow:-—

Pregram i - Data

Method for solving a set of equations Set of equatiops

_ |
Method for sorting words into dictionary order | List of words .
]

Most of the program consists of a series of instructions telling
the poqputer to earry out wvarious operations, Those are kept in the store
in a gode_br '1apguage'_which is. not readily comprehensible to the programmer,
it is possible, but tedious, to write programs in this language (in the
eafly‘days of computers, nothing else was avpilable), Nowadaye we can
write in a moro convenient language, .iltlas Autocode for exsmple, and the

computer is supplied with a COMPILER which translates the program into its

own language,

In the first place the program, and often the data as well, will be
written down with pencil and paper, Aftor careful checking, this will be
converted into suitable form (normally punched paper tape or punched cards)
for feeding td an INPUT device, '

7

QUTPUT

The results of the caleulation will come out via an OUTPUT device
which either prints out answers directly, or produces puncherd_ paper
tape or cards for;aubsequent,pxint;ng. A device for printing_qut;
answers directly is known.as a LINE PRINTER,

We can now give an improved versicn of Fig, Z:—

Fig. 3
S TORE
instructions information
- {in machine lanmage)
7
¥ILL
i
‘\ o
Ty T
ATTAS
i
AUTOCODE ¢ ~\IPUT _ OUTPUT
COMPTIER i '

Program
in Atlas
Autocode

Data.

The soquonce of events sghould be:i=-

{1) BRead in P;ogram.
{2) Coumpile {i.e.'translate) into machine instructions,
{3) Exocuto the compiled prograﬁ which will contain instructions to
' ' (a) Road in Data ‘
(b) Carry out Calculation/Processing

{¢) Print out Reosults

However if any violations of the rules of the language are detected
during the compiling stage, no attempt is made to execute the program, ‘

but instead a list of faults is printed out,

Evon aftor execution of the program las sterted, some part of the -
translated progrem may turn out to be impossible for the machine to
oxecute, For example, it cannot divide by zero, The oxecution will

then cease and an appropriate fault signal will be printed,

_:"an

ORDER OF FRESENTATION TQ COMPUTER

in a small job, the preliminary information (Job Heading), program
and data are usualiy all supplied to the computer on one piocce of tape

ordered as follows:-

CENck g } Job Heading giving title of program
JOB - } and stating which compilor is to
BLOGGS' FIRST PROCRAM } be used to translate the program
COMPILER AA) following. (AaA=itlas Autocode)
bagin)

‘ll.")

LA 2B N) }

seebn) AProgram

Shenh)

seesa)

ond of program)

ISR TN)

adesy)

[ER Y]) Data

E RN RN))

EN N NN))

#4% 7 ' } Murks ond of tape

NOTES

(1) Programs written in Atlss futocode ezn at present bo run on eifher
an Atlas or a KDFQ computer, If using an Atlas, we have the choice of
two compilera, both written at Manchester University

(2) COMPILER 4. s
(b) COMPLYER 4B ©~
The latter iz a faster but'somewhat‘reéfricted version of fa,
~The Atlas gutocode compilsr for KDFG has beon writtem at Edinburgh
Universitjp - o
Exeopt whero spocially indicated; this book describes how to
write programs equally acceptable to all three compilers, Prociso
spocifications of each compiler can bo obtained from the approprate

Computer Unit,

{(2) The oxample of a Job Heading given above is the minimum required,
New programmers should consult the Computer Unit of their own University

to discover what extra details need be given in any particular ease,

1o,

ANALYSIS OF A VERY SIMPLE PROBLEM

Suppose that we wish to read in a string of letters of the
alphabet (in any order) and count how man&rtimes each letter occurs,
To mark the end of the string we shall use a full. stop.

A convenient method of doing this is to set up 26 counters in

the - machine, ope for each letter of the alphab9t¢

A B C

-...ID...'..."._.'.I...Il‘.l‘.....'..‘.'....'

A possible flow disgram is:-

Start
here

Set all counters to Zereo

~-
} Read in a letter or full stop
Queétién‘
Is it a full stop? —Yos
I¥o
o
add one to the
7 counter for the
A letter just read
in
T

Sﬁppose we now wish to print out the number of

has occurred, The process is:-

)

‘\Start with letter "A"

N

Print letter of alphabetb
followed by the figure
given in the appropriate
counter

times each letter

o
e

NOTE

‘Question

the letter "Z"7

H
‘_.Yes

L Stop

Move on to the next
letter of the
alphabet

Have I just dealt with

An Atlas Autocode program corresponding to these flow diagrams

will bs given in Chapter 4.

iz,

13.

CHAPTER 2 : BASIC NUMERICAL CPERATIONS

Names,

Declaratione of variables, including simple arrays,
Basic input, output and assignment instructions,
Sepa_rators, Comments,

Blocks,

Labels,

Jump Instructions,

Conditional Instructions,

Example Print the average of e list of numbers,

14,

15,
ATLAS _AUTOCODE

_ The Atlas Autocode languzge is better equipped for dealing
with numbors than with other types of informafion. For this reason,
the basic principies of the language will first be explained in torms of vory
elementary calculations with numbors., Some squivalent orders for

manipulating non - numorical symbols will be given in Chapter 3,

NAMES

Before a number or symbol can bo placed in a location of the store, this

location must be given a name, A namo must start with a lettor and consist

of
(a) one or more lottors (8,b,seseeZrd; By aew 2)
(b) possibly followed by one or more digits (0, 1, 2, +vo @

- {e) pomsibly fotlowed by one or more primes (¥, ', ' ote,)
Examples x, a2'', total 3, SUM', Sum

Notes (1) a2c is not pefmitte&'as a lettor follows a-digit
~(2) The compiler completely disregards a11 spaces (and underlined
spacos) in the program, Spaces may thus bo usod to improve
legibility of program,

=
it

3

Tho hasic units of a program are
{a) Declarations

{b) Instructions

{¢) Soparators

Theso will be desecribed in tho following pages, Wo shall refor to them
colloctively as 'lines', since they are normally written on distinet lines,**
However, two or more '1inest can bo written on the same physical 11qe, provided

thoy are separated by semi-colons.

** What is hera called a ‘1ine is often called a 'sourco statoment! in
_the 1iteratura, '

16,
DECLARATIONS
Namos arc allocatod to locations in the storo by means of

declarations such as:i-= .

lDeclaration - Meaning -

regl a .- © sot aside the next unused location, call it

a and be prepared to put a 'rqal’
] number in i£ later,
integer b, c3 set aslde the next two unused 16catipns,-
eall them b and ¢3 and be propared to

put integers (whole numbere) in them lator,

Note (1) GCenerally sposking, a nemp allocated to a location will romain
fixed tRroughout the program, However, the contents will vary whenever
new number is placed in it, 7

(2) Tho word 'variable' 1s used to doseribe locations which have-boon
set aside to contain numbers, either real or intoger. . -

{3) Thore are threc distinctions betwoen real variablos‘and.intager
variablos:- -

{a) An intoger wvariable can only contain a whole number, A real
variable may contain either an integer or a numbor such as 73.4827, with up
to 11 significant figures, ’ l
'~ {b) There are certaln purposes for which only integer variables
are allowed, (e.g. To give tho number of timés m group of instructions
is to bo repeatod: repeating 1.7 times would be impossible). =

(c) Vhen wo do multiplications and additions of integer variables, the
machine produces the exact answer, When doing arithmetic on real variables,

the answers are 'rounded off' to 11 significant figures,

. UNDERL INING

;: Note that the underlining of certain key words (resl end integor above,
for oxemple) is an intogral part of the-language, fﬁtﬁthib'stagé‘thé'v
reader is advised to accapt, as arbitrary rules, that certain words are,

and others are not underlined,

17,

DECLARATION OF ARRAYS
We can also doclare a whole array of variables, 2ll having the same

namo, but distinguished from one another by means of a 'suffix' in brackets

.after_it.
roal array d4(1:4) set asido 4 locations :-~ -d{1) B
: d{2)
a(3)
da(4)
roal array o(1:7),f,z (0:4) -set aside (%7 locmtions for e(1) to o (7)
. - (-
(5 locations for f{(0) to £ (4)
(
(5 locations for g(0) to g (4)

Notes (1) Arrays of integer locations ars doclared in a similar manner by

writing Integer array eesasses

(2) In tho case of real arrays, it is permissible to omit the word

Toal, simply writing array ,.eseere

(3) Notoe tho difference between

ronld arvay d(1:4) which gives four locations
and real d4 ' which gives only one location

Theso four types of declaration are normally writton on soparate iines,

but may instead be separated by a semi-colon,

either roal a,b,x3"
- integer array y (1:20)

or - roal a,b,x3'. ; intogor array y (1:20)

Further types of declaration, alloecating names to functions, routines,
“switches, and multi-suffix arrays will be described Ister, Doclarations are
preparatory in nature, and should be contrasted with Tinstructions® which, ‘
when executad, bring about the transfor of informationAto locations already

- preparad,

Note ! A name cannot be used simultancously for two difforcent purposcs,
For oxamplo:-

real i

real array 4(1:10)

would cause a fault signal.

18,

INSTRUGTING

. Somp simple types are given *¢lew, They are written on separate - lines

or separated by semi-colons in the same manner as declarations,

Inout Instructions (elso see p. 858) Moaning ' .-
‘road () read in the noxt number in the data and

put it in the location whose name is a,

:lxegd:(b?_gg,_g(4)) = o rvoad in the néext 3. humbors: ij the data
and put them in b, ¢3, and d4{4)

Assignment Instrucgtions (also s00 Pe 42)

Thede lock like mathematical cguations but the meaning is quite
differoent,

Instruction - Heanlng
a=b4+c work out the expression on the right

(1.8, contents of b plus contonts of
e) and then put it in the locatiomn

given on the left (i,e, a)

thus
7,32 | would a 13,0
10,0 become b lo,0
c "3.0 c- "3.0
a=2a+1 copy the contents of a, double it, add

1 and place the answor back in a.

Notes (1) b+ e =2 ic not permitied since b+ ¢ i# not tho name of a variable.
{2) a =5b is quite differont trom b =8, T
{3} the use of more complicatod oxprossions on the right will bo

explained later,

" 19,

Output Instructions (Also soe p, 88)

print (x; 3, 1) - o) work out in the Mill the value of the

print {(2x + v+ %, 3, 1) - - ¢ .7 ' first expression in the brackots (i.e.

" ’ i % or 2X + ¥ + 7) and print the value
of the oxpression with 3 figures
bsfore the decimal point and one after,
{The figures 3 and 1 can, of course,

be wvaried),

newline C output printer is to go to the start

of a fresh lineo, moving the pdper up

accordingly,
newlines (2) ' oquivaleont to:- nowline ; newline
space ’ output printer is to leave one biank

space (printing takes placs”from

1oft to right across the page)

spaces {3) . Co oquivalent to:~ spaca; space; space

caption MORRI51100 T _output printer is to print out the
o sot of characters MORRIS1100,

Note The instruction gaption ,.... 18 chiefly used to obtain headings
and explanatory notes in the output, These notes may he required to
inejude spaces, newlines, ote, '

A speéial method is provided for ocutputting the symbols space,
newline and semi-colon with a caption, since spaces are ignored by the
computer and a semi-colon or newline character marks the end of the

caption Tline':-

$ or & reprosents a space
or A represents a newline
§ or represents a semi-colon,
Either

(a) caption & MORRIS % 1100
or (b) newline ; caption MORRIS ; spaces (2) ; eaption 1100

will produce an output (et the beginning of a nowline):=

MORRIS 1100

- 20,

SEPARATORS

. & fow lines, neither declarations nor instructions, have to be written

:;igtp a program, chiefly to mark tho begining and ond. of blocks and

gxroutinesgv Exnmples are begin end and ond of program, doseribed on the

next page,

COMMENTS

Any line starting with comment is disregarded by the compiler, This
permits the insertion of explanatory nctes, which must not contain o

semi-colon, for the benefit of the reador. For example:-

read {(n)

comment n is the number of cases to be solved,
For brevity, a single vertical bar can replace comment., For example:-

read (n)

_] n is the number of cases to be solved,
A third equivzlent method of writing the above is:-

road (n) ; | n is the number of cases to be solvaed,

21.

BLOCES

A program is normally split up into a number of blocks, In general =

block consists of

. . boegin
I E N ER N])
)
ananéda)
’)
rEhaEN) declarations -
)
LA A RRE))
)
sS40 000)
ahshed)
)
LR XN) i
} instructions
avasae)
3}
L E R RN N))
end

At the end of the last block of a program, end is replaced by

ond of program,

Example begin
. real array a(i:3)

real b

road (a(1),a(2),a(3)}
b = a(l}ia(2)+a(3)
print (b,2,3)

end of program -

This cousos the machine to read in three numbers, add them and print out
the total,

Note The machine automatically terminates the caleulation on reaching

end of program, If it is requirod to stop tho calculation at any other peint,

thke instruction stop is used,

22,

LABELS

Any "line' in the program can be labolled by writing on the left
a positiva'intéger,_iollowed by a colon, The label has no offect other

than to give the lino a reference numb9r1;

EXAMPLE
i=i+j : ;
10t read (x) L ' . !

x=x+i

JUMP INSTRUCTIONS

Normally, instructions are obeyéd in the order in which they are
written. In order to make the machine' jump, either forwards or
backwards, to a labelled line in the program we can use a jump
instruction written, for example:-

instruction " meaning

=>» 10 the next line to be
' - obeyed is the one
lasbolled 10:
Notes (1) By making the machine jump back to an earlier part of

the program wo can make it gd'round a .loop of instructions many times, -

(2) Although jumps can be either forwardes or backwards, we
are not allowed to jump from ono block té another,

{3) Jump instructions are ffeqﬁently made conditional, as
described in the next sectiong

.23,

CONDITIONAL INSTRUCTIONS

fesignment and jump instructions mey bz made subject to a condition,

Examples } Meaning

a=b+ o.ii.x =0 ' Carry out the instfucfioﬁ if
=> 27 unless a > b + 2 _ (or unless) the condition is
stop if n>100 satisfied, Otherwise skip and

paés on to the next instruction,

If preferred, instructions may be written with the condition first,
followed by then:

if x=s0thena=b +c

unless a > b + 2 then > 27

if n > 100 then stop
Note (1) Note the difforent uses of '=' in the first example, In x = G
it has its normal mathematical significance, Ina = b + ¢ it means an

assignment,

(2) In the condition we may use any of the relations = % > z2 <%

MORE COMPLICATED CONDITIGNS

These may be formed

(1} with a two-sided condition #**
) €., IfO0<x <1l +ythen senses
(2) by writing several conditions éeparated by EEE with tho obvious
signifiecance, _

@.2, 1f x>0 ahd y = 0 2nd 2 # 2 thel cyessaes
(3) by a similar use of 2 succossion of or's

.8, if x>0 o ¥y =0 OFr z £ 2 then .iivianns
(4) by combining (2) and (3) provided and's or or's are separated by

brackets,

©.8. 1f (x>0 07 y =0) and z # 2 thon v.esseusss

%% This form of condition is not accopted by thoe Manchester Compiler AR,

24,

EXAMPLE OF 4 SIMPLE PROGRAM

Suppose wo want to road in a list of positive nﬁmberé and print
cut their average, .Suppose we do not know in advancq how many thore will
be. - In order to inform the computer when we have come to the end of
the list, we terminate it with the number‘rl;

Wo shell need the following variables:i-
(1) =& place’'in which to put the numbers as they are read in,
{2) a2 running total, '
(3). a count (integoer n, say) of how maﬁy numbers have been read in,

Note that (2) and (3) must be set to zero before starting.

A possible flow diagram is given on tho next ﬁaga:—

25.
PROGRAM FOR PRINTING AVERAGE

A possible flow diagram is:

£
N
10:
1™
- Add nmmber %o
No N total . 5
7 Add 1 ton ?
1M ~pr1nt out
total/n
Stop

and a program to implement this isi~

-kegin

integer n
.1;9_%;!_._ total, x
. n=0; total =

10: read (x)

> 1lifx=-1

total = total + x

n=n-+1

-> 10 b
1is newline

caption Average & =

print (total/n,3,5)
end of program

20,

27

CHAPTER 3 : BABIC SYMBOI, CPERATIDNS

{NOTE - This chapter may be omitted by those solely interested
in numerical calculations),

Input of symbols,

'Asaignment of symbols,

Conditions using symbolsa,

Cutput of symbols,

Relationship between symbols and integers,

Example Program to count symbols,

< 2Q.

MANIPULATION OF SYMBOLS

INTEGER wariables ean not only bo usod to store intoger NUMBERS as
deseribed in the last chapter, but can alsc hold SYMBOLS, Possible symbols

include
(o) The lottors of the alphabet {both upper and lower case),
(b) The numorical digits 0 to ¢ (soce note 1 bolow).
) ¢ > L1 .+, + 53 % 2
(dY +-s/4%|=g>><4ar7
{e8) space and noewline,
Notes

{1) The symbol Q is NOT the sams as the number g,

(2) Symbols can be stored in integer variables, including elements of

integor arrays.

INPUT OF SYMBOLS (See also p, 87)

" Input Instruction ' Meaning
- road symbol (a) Road the next symbol on the data. tape

and place it in loeation =, Move the
. - . o : © dats tape on by one symbol,
T ' Noto (1) The instruction road symbol
" can only road ono symbol at a time
¢unlike the instruction read which may
read sevqral_ngmﬁers).
Note (2) = MUST be an integer variable

or an olement of an integer array.

Important Note When reading numerical data, spaces and newlines simply

mark tho ond of a number, However, hoth spaces and newlines count as

symbols and will be read in by the routine read symbol,

39.

ASSIGNMENT OF SYMBULS

Instructions to assign symbols to integer variables are written in
a form vory similar to those which assign numbers, but the symbol

concerned is written between a pair of 'gquotation marks'; For examplei-

integér i, J, k

i = TxT
j = !PI
k = '7"

Note that tho last two instructions assign the SYMBOLS P and 7 to jand k
rospectively., On the other hand, the instructions

assign to j the NUMERICAL value currently stored in the variable named P,
‘and to k the NUMBER 7,

CDND;TIUNS

Conditions depending upon the equality, inequality, ete, of symbols

may be written in z fairly self-evident manner e.g.

_ if i = "s' thon stnp

-> g unless k = "?' op j = "A'

2

SYMBOLS FOR SPACE, NEWLINE

- Tt was explained on page 10 why it is necessary to write sapaces,
newlines, oto,-in a special maﬁnar‘witpip.q cagtion,A The same problom
. : arises when wo wish to write these SYMBOLS in assignment instructioné,

conditions, ete, and the same special conventions are used, For example,
i =. l*!

assigne the symbol 'space! to the variable i,
2 simple mothod of resding the next 'useful' symbol in data

(i,o, distegarding spaces and newlines) would be:-

integer i. .
1: road symbol (i)

© > iifi= "4 ori =4’
'lo;.l‘..l;ia.

AN ENRER AL NRD]

OUTPUT CF SYMBOLS

The instfuctions

(M ascesssreesen J
{(space)
‘ { spaces £))
: { newlino)
()

newlines ()}

are available for output of symbols, as described on page 19, There

is also an instruction print symbol:-

Instruction Meaning
_print symbol (%) print out the symbol * .
i ' i ‘

print symbol (i) ' print out the symbol currently held
’ in the integer i

Note (1) The first instruction sbove could equally well be written:-
. caption *

(2) print symbol (i) is useful when we do not know in advance what
symbol is going to be storod in the integer i,

. 32.

RELATIONSHIP BETWEEN SYMBOLS AND INTEGERS

Symbols are stored in integer variables, and in faet each symbol

has a numerieal value to which it corresponds, However, since this

correspondence may vary bdtwoon compllers; programmers-ére advisod not -

to make use of this fact, On the other hand, all the compilers are
arrenged so that 'A’ has & value one less than 'B', which is ono loss
than 'C!, otc,, thus preserving the natural dictionary ordering, The

game is true of 'a!, "b',..... etc, and of '07, 1T esne otc,

Example

To test whethor the next symbol on tho data tape is a lower case
letter in the first half of tho alphabet we could write:-

read symbol (i)

3_.;_ nt i i _<_ Tm! thon seessvacrasrss

|
]

336

EXAMPLE OF A PROGRAM TO COUNT SYMBOLS

Suppose that we wish to read in a sequence of symbols as far

as the first full stop, and print out the percentage which are ecapital

E's,

The program required is almost identical to that used on page 23

to print the average of a list of numbers,

10:

11

begin ; comment to give porcontage ocecurrence of letter E
integer n, Numbor of Es, x '
n=0 ; Numbor of Es = O

read symbol(x)

-»11 if x =1,

if % = 'E' thon Number of Es = Number of Es + 1
n=n+l

->» 10

nowline

caption percentage $ of 4 E's & =

print(i00*Number of Es/n,Z,1)

ond of program

For comparison purposes, the program from page 25 is

roprinted below:=-

hogin § comment to give average of a list of numbars

integer n

real total, x

n=03; total =0
road (x)

-> 11 if x = -1
total = total + x
n=n+1

-» 10

newline

caption Average $ =
print (total/n,3,58)

end of program

35

CHAPTER 4 : EXPRESSTONS, CVCLES, FURTHER ARBAYS,

Arithmétic expreésiuns.

Permanent functions,

Further asssignment instructions,

Cycles,

Examples (i) Print the average of list of numbers,
(ii) Counting symbols,

Switeh labels,

Multi=suffix arrays,

Example Bummery of Examination results,

30.

ARITHMETIC: EXPRESS IONS

. 37.

There are many blaces in a program where we have to write

an arithmetic oxpression (e,g. on tho right of an assignmont instruction

or in a print instruction).. The simplest form of expression is a single

variable or numerical constant, More generally, an expression consists

of wariables, constants and functions, connocted together by

mathematical symbols, The method of writing constants is given below;

variables have alroady been described - (pages 15 - 18) and functions will

be deferred until page 4C.

constant . meaning

37) ~ obvious

0,25)

2.374)

1e3 ' 1000(i.e. 1 x 103)

1,.732a-2 ~ 0,01732
) (i,e. 1.732 x 10°%)

. ' 34141504 4 0s

il

0.5

note
——

0,25 and ,25 are
equally valid,

(i) This is called the
’fioafing point! form
for a constant,

(1i)The number after o

must be an integer

.eonstant,

4 is one symbol,
Other fractions must
be writton as
quotients{i.e, 1/3)

“38.

Mathematical Symbol Meaning
+ e T © - addition
T o o o Co pubtraction
L% . L multiplication
e o : division ..
* S : _raiso, to a power (%3 mesns a®)
2. squaring) i
| used in pairs as modulue signs,
Notes

(i) In normal mathematical notation we often omit tho multiplication
sign (e.z, ab for a*b), In Atias Autocodo we write the * sign,

othorwise the compiler will look for n variable with the name Yab', The.
* can be omitted where = constant is followed by = variable

(c.8s 3.3%y and 3.5y are eguivalent)
(2) 'a? and a%2 mre equivalent. All othor powers must be written with f,

(3} In manuscript, tho symbol # is usually written ‘T,

39.

PRECEDENCE OF OPERATORS (+ - * / #)

‘ -.Thofe may be somo uncortainty about the meaning of an expression such
as a¥*bie, Do we carry out the multiplication first, giving (a*b)+e, or
the addition first giving a¥(biec) ? .

In the absonce of brackots, we have the rule that, of two adjacent
operators (like * and’+. above), the oparatorlof higher precodence in the

table below is to be carried out first,

(1) % (highest precedence)
(2 * or /
{(3) +or - (equal lowest precedence)

Where two adjacent operators are of oqual procedeonce by the above table,

- the one appearing to the left (in the expression to be svaluated) is carried
out first, o

T Notés (1) The multiplication oporétor betwoon = constant and & variablo has
* the same precedehce whether written explicitly or "implied' (see note 1 on

previous page) : -

(2) ' The symbol 2 jg treated as equivalent to tho pair of symbols ¥ 2

and procedence is given accordingly,

(3) 1If we wish to over-ride the abovée rules, we muset use brackots as

in normal mathematical notation,

(4) Vhen in doubt it is wise to insert brackets for safety and

© - elarity,

(3) The 'loft-hand prgcedence' botween + and - agroes with normal
usage, . '

©.g+ By a-btc weﬂmﬁdﬁ'(é—b)+c and not a-(b+e)

'Exéhgles o " Moaning
. a/b¥e T2 xe
‘,I. . - - b- -
a/(b*e) &
be
atbhéc . . a® x e
af(b*c) ‘ o abe

Note The first two examples show that it is nocessary to bracket
donominators containing more then one torm, A common mistake is to write

a/2b when a/(2b} is intonded,

40,

FUNCTIONS

In addition to variables and constants, functions may also be included

within expreasions; The basie functions available aret—

real function ' meaning note

sin(x)) ‘ as in

cos{x)) elementary ~ x in radians

tan(x)) trigonometry

sq rt (x) +\f';:1

log (x) logarithm of x to base ¢

exp (x) . e

mod(x) modulus of x mod{~3.7)=3.7;mod(3.7)=3.7
(i.e, sbsolute Can be written |x], but
value of x) soe note below,

aretan (x,y) . tan~ ! {y/x} In radians, Value is in

ist or 4th quadrant if x>0
Znd or 3rd quadrant if x<0

radius (x,y) +J—x';~1-}?'

frac pt {x) fractional part of x frac pt(3.73)=0.73

frac pt (-3.73)=0.27

_integer function meaning noto
int{x) nearest integer to x int (3.73}=4
int pt (x) integral pert of x int pt (3.73)=3
. Ant pt (~3.73)=-4
parity {n) 7 +1 if n is even n must be an
=1 if n is odd ‘ integer variable,

Notes. (1) The first group of functions (down to frac pt) all produce
& number”of type ronl, which can only be assigned to a roal variable, The
last three produce a number of type integer.

(2) In particular, note that the function mod(x) produces a number
of type real, irrespective of whothor x is of type roal or intoger. On the
other hand, a pair of modulus signs will give the same numerical wvalue as the
modulus function, without altering the type, (i.e, integer remnins integer),
Henee, if n is an integor,

n = |nl is valid
n = mod{n) will be faulted,

(3) The above functions are all understood by the compiler before
the program is read in, The method used to define additional iuﬁctions, if
roquired, will be givon later {page, %0}

(4) Az the names sin, log efc. are already in use, they should

not be used by tho programmer in any of his declarations,

|
|
1

41,

INTEGER AND REAL EXPRESSJONS

The differences between intoger expressions and real oxprossicns lie not
g0 much in the values of tho oxprossions as in how they are constructed and

used,

(1) 4ny oxpression consisting entirely of integer variables, integer
constafits and integer functions is called an INTEGER EXPRESSION, Any-'
other oxpression is ealled a RE;L EYPRESSION,

{(2) We shall meot a number of places where an integer expression is
requirod. In theso cases, a real oxpression is not allowed, not oven one
whose value may actually work out to be an integor. On tho other hand,

whorover a roal oxpression is expeected, an integer expression will do instead,

Intogor Expreossions

The main cases where an integer eoxpression is compulsary are:-

(1) When assigning a value to an integor varisble, -

(2) As the suffix of an array olement,

(3) As the powor to which & number is to be raisod, (Raising to a power
is done by repeated multiplieation), .

(4) ..In gycle instructions (page 43)

Examplos Suppose we have declared

integer i
real x,vy

- real array d(0:10)

Exemple of (1) Although x=1 is permitted, i=x will cause a fault signal
beeause x is a roal oxprossion,)

Exomple of (2) If we have previously sot i=3; x=3 then d{i*i) refers to
d(9) but d{i*x) is illegal,

Example of (3) x¥3 and xt{i+i) are legal expressions but xtfy is not,

Symbols ns Intogor Exprossions

A symbol written betwoon 'quotation marks! is a possible form of integer
exprossion, but should only be used with caution, 4 simploc and safe

oxample of this will be found on Page 47,

FURTHER ASSTCHLMENT INSTRUCTIONS

Thé*general'form of an assignmont ir sither
(1) assign the value of an INTEGER expreasion to ap INTEGER variable or

(2) assign the value of a REAL or INTBGER oxpression to a REAL variable,

Exanples Suppose we have declayed real a,b,c,x

integer i,J,k

‘then possible instructions are:-

x = (b + sq Tt (b*b ~ 4a*c))/(2a)
i = int(y/K) + 5+ '

a = log (L + cos (27 x}) + 3.74b
x =1 h

Notes 1) As already explained i = x will cause o fault signal becanse

x is real, If required, wo can write: i = int{x)

(2) On the Atlas vorsions of the languago we can, without a fault
signal, assign to an integer variazblo any integer'expression, The
responsiblilty for ensuring that the expression will work out to be
an integer, lies with tho programmer. {division ox ralsing to a negative
power are possible causes of non-integer results), See the second example

above,

(3) VWhon using KDFQ thero is the further restriction that,
whenover an integer oxprossion is compulsary, each stqge in the evaluation
of the expression must yield an integer result, Referring to the rules of

procedence for operators, we see that, with the previcus deoclarations,

[}

3 = ix{i+1)/2 © will alwaye work but that
J
when (i+1) is oven, will b faulted if (i+1) is odd, -

{(Aal)2%i , while having the =ame rosult as the previous line

1§

(4) It is possible to uso oxprossions inside larger expressions;

in particular we can havo a function of a function &s in the third examplo,

43.

CYCLES

- Supposa that we'wisﬁ to carry out a cortain paft'of & PYrogram
10 times with an integer i taking the valuos 1,3,85:cc0000e5.,1Q ON

. Successive occasions,
Cloarly it is nocessary to indicate

(1) tho sequence of values which the integer is to assuma, and
(2) the heginning and ond of that section of program which is
to be ropoated,

We achieve this by writing:i-

cycle i = 1,2,19

orders making)

up the section)

of program) . -

to be repeated) ¢

P W W WY

ropeat

LA R R NN)

NOTES, ,
(1) The eequence of values i is to assumo is indicated by writing
tovele 1 = ! followed by 3 integor exprossions giving the initial
“ -1——- 3

value, the increment, and the final value,

{(2) The control vorisble i must have beon previously declared to be

an integer or an olement of an integer array,

(3) The soparator repeat is used to indicate the ond of tho section of

progrem to bo repeated,

(4)'The expreossions for the initizl and final values and the increment
are evaluated on first reaching the gyclé. The number of times the cycle
is to be executed is '

1 + {final value - initial valus)/increment,

and a fault is signalled if this is not a positive intoger,

Instead of using cycle and repeat in the shove example the same result

could have been obtainéd by using jump instructions. For example:-

The same

orders making
up section

of program

to be repeated

W W WY

flow diagram serves for both methods of writing this program:-

~
set &+ =1
L
N \ {

carry out the
calcoulation

No

increase
iby 2

P

45.

NESTING OF CYCLES

‘Cycles may be nested to any depth, Each gyele must have oxactly

one associated roepeat,
2RSS

Example

cycle i = 1,1,4
read (4A(1)) ~
newline
eyele j=1,1,1
print (4(i)%3,2,0)
spaces (2)

ropeat ; comment this refers to gycle i

repoat 3 comment this refers to cyele i

Supplicd with the data
o 1 2 3

the output would be

o

i 1

2 4 8
3

9 27 &

NOTE

Within cycles, either single or nostod, the control variable(s)
may bo usod for two distinet purposes:- '
{a) to count the number of times the cycle has been exceuted,-and..-
{b) to vary systematieally quantitios occurring in arithemetic expressiomns,
(o,2., the integer i in the 2bove oxample both counts the number of times
the outer cycle is executed, and also enables us to operate on different

array ¢loments on ocach oceasion),

46.

Example
Use a Ezglg.to gimpliify the program on pages 24-25 for
giving the average of & list of numbers,
Instead of using ths special number -1 to torminate the data,
ﬁe head the list with an integer indicating how fiany numbers there are
to follow, '

read in integer

o
set
total = 0
]Start
| cyele
i
hY
i e
read next
number
No
Y
cycle
Add to
m/mplete . Add ¢
% ”
\'w.
Yes
print { .
$otal/n ¥ Stop .

and the program-is:—.

Eggia' o R AL . L T
integer i,n ’ S : S L e
Teal total,x

read(n)

total=0

cyele i=1,1,n
road(x)
total=total + x

repeat

caption & Average & =
print (total/n,3,5)

end of program

47

EXAMPLE OF A CYCLE TO COUNT SYMBOLS

We can now program the flow diagram given at the end of the

introductory Chapter 1. The following program will only count capital

lotters, and will disfegard all othor symbols oxcept the torminating

full stop,

bhegin

'integer array Countor ('A':'2'); comment 'A! and 'Z' are integer constants
. integer i, j

n e

cycle i = "a', 1,'z2!
Counter (i) = 0O

ropeat

t read symbol ()

> 2 if §=",'

Counter(j) = Countor(j) + 1 if'a’2 3 < '2'; | disregard all othor symhols
~-> 1

eyele i = 'a',1,'z?

newline

print symbol (i)

print (Counter (i),4,0)

repoat

end of program

a3

48.
SWITCH LABELS

1t is somotimes required to jump to one.of several points.
of & program, depending upon the value of some (intogor) oxpreossion, .
One mothod is givon below on- the loft, with tho cquivalent and more .

compact use of a swltch given on the righti-

" switch 4(0:3)

LA R NS 2

21: read (i) A{3Y? read (i) X
> 22 if 1 =0 -> A(1)
-> 21 if i = 3
> 233ifi=2
22 a=b +¢ A(0): a = b + ¢
a'=2a ..o ofeoooit 00 -~ PA(2} a2 = 2a
NOTES

(1) As with ordinary labels, jumps can be either forwards or: backwards,

but éannot go outside the current block,

{2) Switch declarations appear among the other deelarations at the.
head of the block, and hence the name is declared before being uged_.

for oither a label or a2 jump instructicn,

{3) The namo of the switch must not be used for any othor purpose

at the same level,

(4) It is not nocessary to use all the lebels in the range declared
{note 2(1) missing above), but a fault would be signalled if i had the

value 1 on reaching the instxuction -> A(1),

(5) The bounds given when declaring a switch must be integer constants,

although tho jump instruction can use intoger expressions such as -> A(i+2]).

{6) The symbol -> can only be followed by & constant (ordinary label)

or an element of a switch,

49.

MULTI-SUFFIN ARRAYS

On page 17, we introduced declarations of arrays with one suffix, 1In a

similar mapner we can declare arrays with two or moré suffices,”’ *~

daclaration) Eeaning
roal array A(1:2, 1:3) sot aside 6 locations

for real wvariables to be

known as follows:

ACL, LY
5Q1,2)
A(L,3)
(2,1
4(2,2)
a(2,3)

intoger array (1:2, 1:3) as above, but giving integer

variables,

Arrays with more than two suffices may bo declared in 2 similar
fzshion. For oxample:-

real array B(0:4, 0:4, 0:4)
integer array C(1:5, 1:5, 1:20, 1:30)

Example
Suppose we wish to form a tablo giving the number of succosses in il
level Mathematics, Physics, Letin and French, sub-divided into boys and

girls, Let us store the numbers in integoer va;iables 4{i, 1) as follows:-

Maths Physics Latin Fronch
et Ty S

Boys | a{1,1) i a1,2) 5(1,3) £(1,4)
1 ; i :
girls! A(2,1) ! A(2,2) E £(2,3) 82,4

Herae the first suffix gives the sex and the second the subject,

To sot all tho first row to zoro initially, wo could write:
cyclo j = 1,1,4
i, =0
repoat
and then for tho socond row
eycle j = 1,1,4
a2, =0
ropoat

50,
1t is easier td combine these two processes by means of a eycle within .
a cycle
gx&lg i=121,1,2
eyele j = 1,1,4
A(L,3) = 0
repeat

The same method will be used to print out the results in a rectangular
table,
Dats Suppose the data is supplied as follows:-
{1) An integer giving the number of rosults to analyse,

{2) Groups of three integers in which

the first indicates sex {1 for boy, 2 for girl)
the second indieates subject (1,2,3,4 as bofore)
the third indicatos success (0 for fail, 1 for pass)

for example:-

data meaning

999 : 999 rosults to follow

4 boy. has taken Mzths
and failed.

i A boy has taken French
4 - ' and passed,

) , - :

2 A girl has taken Latin
3 ' _and passed,

N .

ote,

& poseible flow dizgram and program aro given on tho following

Pagoes,

saet all eight

4(1,3) to zero

e 2l

read number
of results

gtart

cycle

-

!

read sex, subject

ycle

s

and pass/fail

e

omplete

Print
results

Stop

".

if a pass, add 1 to
appropriate total

52,

begin
integor 1,J,k;1;n
integer array A(1l:i2, 1:4)

gycle i = 1,1,2
eyelo 3 = 1,1,4
A(i,§) =0 7
‘ropeat
repeat

reoad {(n}

gycle 1 ='1,1,n

read-(i,j,ﬁ}) 7 .

if k = 1 thon A(i,J) =n(i,j) + 1
regeat‘")

newline

eycle i = 1,1,2
eyele j = 3,1,4
Print (4(i,3), 3,0)
spaces (3)
repe t

newline

ropeat

end of program

Notes: (1) The inner eycles have boen indented on the pages for olarlty,
This is giite pormissible as spaces in tho program are disrogarded by the
compilor,

{2) In order to achiove a rectangular layout of results, spaces

(3) are put in the inner cyele, and the newline -in the outer eycle,

CHAPTER 5§ ¢ BLOCE STRUCTURE

- Block structure,
Local and Globzl variables,

Example Ordering of lists of integers,

539

54.

«SS.

Block Structurs

o The basiec layout af a block was described on page 21, It hes

the form of begin followed by the appropriaté declaratiofis, then by

the instructionﬁ, and torminated by end. It is permissable to nost blocks

ag in thelfollowing diagram

begin ;
YL)

sasei) declarations)

sasesn .))

)

)

)

seene))

Toann))

[XE R R))
Y.)} outer block

))

))

bogin)))

Yy)) instructions)

arsne) inner block))

sSkewn)))

end)))

))

(AN R X) }

vssaa))

snasa) }.

end)

Note (1) It is sometimos convenient to regard a whole block as one
compound instruction, With this viow of the inner block, the outer block
has tho structure givon on page 21, .

(2} Blocks may be nested within ono another to any depth.

(3) Blocks may not bo made conditional, '
Among the reasons for nesting blocke of program one inside another are the
following, ‘
(an} It may be rogquired to declare an array whose suffix bounds are not
kﬁown until some stage in the exocution of the program, This is
illustrated in the following example where tho fi;st number read indicates

how ‘many more are to follow

bogin

integer n

read (n)
bogin
real array A(l:n)
gyele 1 = 1,1,n
road (A(1))

ropeat

LE R RN)

end

LE A RN

and _

56,

(b) The doclarations made ot tho head of a biock arce cancelled

on reaching the end which torminates the block, Thus if a prograp requires
large amounts of working space for each one of several distinet jobe,

then storage spaco can be cconomised if ench job is writton as 2

distinct block, For oxamplei- .

begin

srens
sesne

bogin

real array A{1:10000)

;t..u-“‘ni
end

..GOII

dahan
begin
real array B(1:20,1:500)
-i‘.."b..oo._
end

and

Note Storago limitations are particularly important oﬁ K.D, 7,0 as none
of those supplied to tho Universities can hold more than 15000 numboers

in the main store, Thoe appropriato operating manual should be consulted
for furthor details,

{c) 1In qgveioping a complicated pfogram it is often a great adventago
that each sub-block can be developed,saperately. A program is
generally much cloarer if its sub—blocksuare.relat@d,to the blocks of
its flow diagram, Anbfher énd closelj related method of breaking a

program down into sub-units is by the use of routines: seo pages 63-Cv.

57+

10cAl, AND GLOBAL VARIABLES

Tt is important to appreciate the sphere of influence of the'
doclarations made in the inner and outer blocks,

A declaration appoars at: the head of a block and nqrmally :egaips
valid throughout that block until cancelled by the end terminating fﬁé
block, It'also remains in- force upon deoscent to an inner block, UNLESS
tho same name is declared in the inner block, In the lattor case, the
variable is held in-abeyance while the machine is executing the inner
block, coming into force again when the gnd of tﬁe inner block‘is
reached, .

* Within any particular block the term local variable is used when
roeferring to variables declarod in this Elock,'and tho torm global
variables when referring fo variables declared in any exterior block,

These points are illustratod by tho following example,

(i) bhegin (i1) begin
roal A | | real A
erenans Y
£=1 A=1
real &, B, C real B,C
mressiassens sssasane
B=1 B=1
c=4 ' c=4
4 = B+C 4 = B+C
end end .
print (2,2,2) ' ' print (A;z,z)
ond C e ond
Hero the name A refers to Hore £ is global to thoe inner
quite distinct variables block since this time 4 hes
in the inner block and the not been ro-declared, In this
outer block, The‘ﬁriﬁt‘ e cése the print instruction
jinstruction wiill print ' will print tho value 5,

tho value i,

EEEEE (1) To communicaté bhetwoen blocks, glﬁhal variables must be used,
sinco locéal varisbles are cancelled upon exit from a block,
(2) 1abels and switch labels, unlike variables, are always loeal to
a block, It is thus impossible to onter a bleck except through the head of
the block (which is just as well as the local declarations sre written
" there), It i= impossible to jump from one block to another,
(2) Similarly each repeat must be in the same block as the cycle
to which it rofers,

EXAMPLE QOF A COMPLETE PROGRAM

Read in 1ists of positive integers and print them cut with each
1ist sorted into increasing order of magnitude. Insert 2 blapk lines

to separate one list from the next.
On input of data, each 1list will be headed by an integer giving

the number of elements in the list, After the last list, a single zoro

will be fod in, indicating an imeginary list of zero length,

Y
N

read nurber of }
Aelements in lis®

~

\\ Tes Stop
,' \¥’No‘

) read list of
elennents

find largest
from first 1
members of list

%

interchenge last
with largest

reduce
iby i

print ordered
list followed
by 2 newlines

Yes

T

EXAMPLE OF 4 PROGRAM

0

29
30

59.

ogin

:

comment to arrange lists of positive integers in

" comment inereiising order of magnitude

integer p

1:road(p)

| 4£ 0 thon stop
integer i,J,AMAX, JMAX.
‘iﬁfeger array A(1:p)

cycle i=1,1,p

read(A(ii)—

=> 3 if p=t

cyele 1=p,;1,2

2MiX=0 '
eyele 3= 1,1,1
if AMAX > ACJ) then -> 2
AMAX= ACH) ; MAX=]

2: zrepoat

A0MaxI=A(1)

A{1)=amM:X

repeat

3:cycle i=1,1,p

newline)

print(i(i),5,0)

end

nowline

newline

-> 1

end of program

%.

Notes (1) p is declared in the outer block, but can still be used
in the inher block where it is a global variable, (Lines 8,9,12,13,22).
(z) The label 1 is in the outer block, so the imstruction '-> 1'

must also be in the outér hlock,

(3) The line numbers given on the left are not printed with
& normal program, and should not zppear on the progrem shest, but the
compiler does in fact count physical lines in this way and will péint
out the line number of any fault found in a program, In this conqection,
note that a physical line may contain more than one declaration or
instruction, that is more than one 'line' as defined on Page 13.
{e,g. line 17),

(4} The sorting technigue used in the above program has been
chosen bocause it is = convenient example. It is not an efficilent
procedure and should not be used to sort large guantities of data,

A more efficlent technique is given on Page 77.

CHAPTER 6 : ROUTINES AND FUNCTIGNS

Routines without parameters,

Structure of blocks containing routines,
Routines with parameters,

Paramoters called by MAKE and by VALUE,
Array-name parameters,

Functions,

Example Ordering lists of integers,

61,

63,

ROUTINES _AND _FUNCTIONS

There are many occagions on which it is necessary to perform an
operstion several times in different contexts within a program, or even
in different programs (perhaps written by different peoﬁle). A
possible method of programming this operation as a unit is to write

it as a routine,

ROUTINES WITHOUT PARAMETERS

On page K5 we oxplained that o block can be regarded as one
compound instruction, Instead of writing out this bloek in full every
time it is required, we can give it a name which is then written
{as a single instruction) overy time we wish the block to be carried out.
Such 2 named block is called a ROUTINE, 1 .
There are throe operations involved in incorporating a routine
into a program (1) Declaration
(2) Calling
{3) Description _
A8 an example, wo use a routine to interchange the values of two

variables x and y.

(1) declaration meaning
- routine spee interchange the name interchange is

to be the short title for =
routine (a block of
daclarations and instructions)
which will be described

latel‘.
(2) eall moaning
interchange caryry out the routine which

-has the short title

interchange
(3) deseription meaning
routine inteorchange the routine interchange
integer z consisgts of the one
zZ =X declaration and throe
X=9 instructions given opposite,

y=2

and

64.

Notes (1) A routine description has tho same structure as a’.

block except that begin is replaced by routine followed by its name,

{2) 1In the routino descriptlion given above, x and y are
global variabies,

(3) The first line of tho doscription is slways the same
as tho doclaration, but with spec omitted,

(4) A routine may bo called in any block intericr to the
one in which it is declared (and doscribed), In this way we can think
of local and global routines, in just the same way as local and global

variables,

(5) 4 routine call is an instruction and may be made
conditional:

2.2, ii p # 10 then interchange

(6) Normally, instruetions in the routine are obeyed in
sequence until reaching end, 1If it is dosired to stop the routine at
some other point, the instruction return may be used, This is
equivalent to a jump to end and hence cannot be used in an inner block

of the routine, retqgg may be made conditonal,

Example Interchange x and Y, and square tham if they are both positive,
routine interchange and square
integor =z |
Z=X X=YiY=2
if =20 or y<0 then return
X = %X*x; ¥y = yrY

end

Note 4 second return could be written immediately before end, but would

be redundant,

STRUCTURE OF BIOCKS CONTAINING ROUTINES

they are declared,

_Routine doscriptione are placed at the end of the block in which

oxtended to i~

bégin

integeYr «asess

realo...i.!lnt

‘routine spec interchange
routine SpPEC syeneds

ehda W T REED

interchange

A ERENE R A NN]

routine interchange
Fabanepi

and

TOULINO sewrve

[EE R E R RN

end

ond

N

e

e o

(R R VA A A A

Tho genoral structure of =a block can now bo

declarations, includiﬁg
deelarations of routines,

instructions including-
routine calls,

.

routine descriptions, cach

having a block-like
stucture of its own,

65,

- ROUTINES WITH PARGMETERS

The previously described routine Tinterchange' will exchange the
‘values of x and y, but will be of no use 1f we wish to interchange any

other pair of wariables,

_ In Atlas Autocode, to facilitate the use of the samo routine in
different contexts within a program, tho user is permitted to write the
routine using formal (or dummy) names for some or all of the variébles
global to ity 1In each eall of the routine, these foﬁmal nance aré

roeplaced by the appropriate actual names,

If formal names are used in the writing of a routine, then the
following modifications must be made to the procedures for declar*ng,

describing, and calling the routine.

(2) In declaring and in describing the routine its name must bhe
followed by a bracketed list of the formal parsmeters used, together with
a gtatement of their type,

(b) 1In cﬁlfing.thé routine the name must be followed by a brackoted list
of the actual parameters which are to reoplace the formal paramcters
on this occasion,

The designation ‘parametor! has been usod above in anticipation of
facilitios which permit quantities other than names (for example oloments

of arrays and arithmetic expressions) to be passed on to routines,

Example 1

integer a,b,i

intoger array A(i:10)

routine spec interchange (integer name x,y) Declaration
tevaversneens

trasesnusrady

interchange {a,b) Call 1
cygle 1 = 1,1,9 |)
interchange (A(1) , 4(10)) Call 2
'regeat

roerdesestdeee
routine interchange (integer mame x,y) Description
integer =z

=X X=y;y=z

end

67.

Notes (1) Here X and y are the formal parameters,

(2) The actual paramoters must be placed in the same order as the

formal parameters to which thejy correspond;

" In eall 1, x i8 Teplaced by a and y by b, In cgll 2, x is replaced by

A(1) and y by £(2), .
(3) The statement of parameter type is omitted in calling the
ruutiné,'but the compiler checks to see that the actual parameters

listed are of the type indicated in the declaration, -

PARAMETERS CALLED BY VALUE Parsméter n in the example below

illustratés the use of a different type of formal parameter,

(AR R ENTFEENRE RN
integer shriek
routine spec FACT {integer name ¥ 1nteger n)

(RS REERNER ¥

,FACT (shriek, 10)
."..’-......‘l

(AR ENEE X R NN XN

routine FACT (1nteger name y, integer n)
1nteger i

y=1

¢yele i = 1,i,n

y = i*y

repeat

end

The difference between the formal parameter types

intezer and integer name is important and must be carefully noted.

(a) integer name, When a routine call is made fhe_firsf action
is to replace the iqrmgl integer name parameter at every
place where it occurs within the routine bedy by the
corresponding actuzl.parameter given at the time of the call,
This must have been declared in the usual way either as an
integer variable or as an element of an integer array (see
the two routine ealls in the example on page 66).

(b) integer In this case the first action is the declaration
of & variable of type integer local to the routine,

This variable is now filled with the value.nf the actual

parameter which may be eny integer expression..

Note The integers n and i are both variables local to the
routine FACT. They are brought into existonce upon entry to tha
routine and their contents are lost upon exit, They differ in that
n has an initial value assigned, which varies from occasion to
occasion depending upon the valus of the expression given as the
actual parameter on that occasion of call, In the call above, n

is initially set to 10,

8,

The parameter types .real name and Eiﬁl ar@_used in a similar manﬁér.
The actual parameter correspending to the parameter type real namg_must
have been declared as a real variasble or as an element of an arraf. The
actual parameter corresponding to the parameter type Iggl_ﬁay be‘a general
{i.e. integer or rezl) arithmetic expression.

Parameters of type integer name and real name are said to_he CALLED
BY NAME, .

Parameters of fype integor or real are said to be CALLED BY VALUE,

In Atlas Autocode parameters called by name are completely
dotermined by the actual values of all relevant quantities'(incluging
global variables) of the timo of call, For example it may happen that o
routine with a parametes list containing say

vesessres{Teal name x, Intoger nams i, sesesse)

is ealled with the actual parameters

srviensealB(3), 3 svavesaens)

whore 4 is the neme of a proviously declared real array. If the &alue of
j at the time of the eall is, say, 10 then in the execution of the routine
the formal parameter x is roplaced overywhere by A(lo) no matter.how
3 varies, -

The reader is warned that the alternative convention { whereby, in the
abovo example, the array element replacing x would be determined By the
current value of j during the oxecution of the routine) is used in some

other programming langunges {.o.g. Algol).

PASSING ON ARRAYS TO ROUTINES

A parameter of type roal array name or integer array name is used in the

‘same manner as. those of, type roal name and integer nzme. We can describe a

routine in terms of elements of an array with-a formal (or dummy) name. In

"each ecall, we give the actual namé of the array which is to bo used in
Place of the.dummy array on that particular ocecaslon,

. Example - The following routine will double the first 10 eloments of any
one-suffix array (provided it starts with suffix 1 and has =t least 10
‘eleoments), o S : T)

- routine double (real array name X) ‘
~integer 1

cycle i = 1,1,10

X(i) = 2x(1)

rTepeat

and -

The routine is called by instructions such as:-
double {A)
double (B) .
which will double £(1), A(2)eeessA(10) and B(1) cees.s B(10).
Note The routine and the two arrays would, of course, have been previocusly

declared in the usuzl manner,

69,
Example In the next oxample it is assumed that a number of square arrays
have been declared and a routine is roguired to print out certain sums
of consecutive diagonal elements suéh as A(5,5) + A(86,8) + ... +3{10,10).

-routine trace (real axray name X, intoger m,n)
TSt - .

inteper i

resl =

zZ =90

gcyele i =m,1,n
2 =z + X(1,1)
repoat:

newline

print {£,5,5)
end

‘and instructions to call this routine might be

trace (4,5,10) -
trace (B,1,50)

Note On all the Atlas fAutocods compilors, there are four types of

paramoters called by NME:~

intoger name

real namng

interer array namo

o0l Array name

and two by valus:-

integer

real
At

On the Manchester COMPILER AA only, thore are two extra types called

by value:-

integer array

peal array

For further details, see the appropriate reference manual, Theso
larray by valus! facilities should be used with caution, not only
bocause of incompatability with other compilers, but also becauss they

"ean use large amounts of storage spece and because of the time taken to

copj all the elements of a large array,

7o

FUNCTIONS

The funetion facilitiee are closciy rolated to the routine facilites.
However, the result of a function cell is a numbor (real or integer) and
function ealls oeccur in arithmetic expressions, The deeclaration, call and

deseription of routines and funetions are compared in the following tablei-

Routine Function
Declaration ; routine opec,, | a, real fn spPoCeeanans

1

i

!...._..-w.- - -,

b, intoger fn SPeC siseee

Result of call | oxecution of
-1

a. real number

an instruction b, integer

Description roubine a, real fn ...

_ b. inteper fn .,.

In place of roturn, the instruction pesult = is used to terminate the
evaluation of a function, However, the use of result is obligatorj. Like

roturn, result must not occur in an inner block of a function,

Example The routine FACT can be rowrilten as sn integer function which

we rename FACT!

integer shriok
integer fn spec FACT' (integer n)

..l‘llﬁihbalo'QO

shriek = FACT' (i5)
seearc0DGUCEDD D

integer fn FACT' (integer n)
integer prod,i i

if n = 1 thon rosult = 1 ; comment seo noto 1 below

prod = 1
cycle i'= 2,1;n ; comment see note 1 below

prod = i¥ prod
repeat
result = prod

and

Note (1) the ascignment of the value of the function to reosult., The
reader should study carefully the two occurrences of result !
depending on the value of n, eithor is a ﬁossible exit point, The
two.linés markod with a gommeat could be combined as in the routine
FACT, but the similarity to the oxample to follow on page 77 would
be leat,

(2) Both the routine call FACT {shxrick, 10) and the assignment
shriek = FACT' (10) produce identical resilts,

21,

Like rovtines, functions have the property of being globzl to any
block interior to the one in which thoy have hoen declared and described,
In particulay, the functions listed on page 40 have the property of being . -
glqbal to the user’s program so that nzither declaration nor descriptioq

is roquired,

Example
The specimen program for ordering lists of positive intogors can he

rowritton to illustrate the use of the routine and funetion facilities,
+ function MiX will be defined which finds the suffix of the largést
" element in the list, In terms of these, tho cycle which achieves the
ordering is written ’ ' ’

eyele i = p, -1,2

J = MAX (:‘.,i.)

interchange (A(§), A(i))

Tepeat
~with a considerable gain in legibility.

The full program is givon on tho next page,

Note (i) The integer array & is passed on to the function MAX in oxactly

the samo manner as was indicated proviously for routine=s,
(2) Tho function MiX could have been written in terms of olements

of the global array A, To give the function a more goneral applicatidn,

wo write it in torms of a (formal) array with name V, VWhen calling.

the function, wo pass on the nzme A as the actual parsmeter to replaqe V.
{3) Tho instruction -> 1 in the outer block rofers to label 1

of the outer block, Tho same instruction in the integer function MAX

rofore to label 1 of that function,

72

bogin
| commont to order lists of positive integors
" integer p

1: re&d(p)-

iﬁ p<0 then stop

begin
integer 1i,j
integer array a{1:p)

integer fn spec MiX(integer array name v, integer k)

routine spsc interchange (integer namo a,b)
eyele 1 = 1,1,p
read (A(i))

) regéat
—>21'.ip_=1'
cyele i = p,-1,2
J = Max(a, i) '

-1iptérchange (D, e}
rapeat

2: gyele i = 1,1,p"

ne%}iné'; Efiﬁ;”igfi);s,é):
ropeat |
integer fn MN'X(integer srray name V, integer k)
integer p,q,r

r=0
eyele p = 1,1,k
if r > v{p) then -> 1
r=VY(p) ; g=0p
1: ropeat
result = g
end

routine interchange (integor name a,b)
intoger =z

z=a. ; a=b ; b=z

end

ond ; commont end of inner block

nowlines (2) ; -> 1

¢nd of program

- 73.

CHAPTER : MORE ADVANCED FACTLITIES

(NOTE Readers inexperienced in programming will probably
prefer to pass straight on to Chapter 8),

Routines and functions as parameters,
Example Numerical integration by trapezoidal rule,
Recursive use of routines and functions,
Examples (i) Calculation of factorials,
| (ii) Quicksort,
{iii) The game of Henoi,

' store mapping funotions,

74

- 75

ROUTINES AND FUNCTIONS AS PARAMETERS

It i possible to include routines and functions among the formal
pzrametors of a routine or function by means of tho type statements

routine, real fn, and lnteger fn, When calling the routine or function the

‘actual parameters must bhe the nameé of routines or functions declared
‘either at the head of the block in which the call is made or in any exterior
block, Note, however, that all quantities, other than the formal
parameters, used in a routine or function description musf he gIdbal to

this description, It is not sufficient for them to be global at.fhe time
of e2ll,

Example

Calculate approximately the area under the graph of y=f(x) between x = xi
and x = x2 ﬁsing the trapeioidai rﬁie; This is illﬁstrated in the -
accompanying diagram, The area of the ghaded part of the panel is

$he(£1 + £2), The ca}cuatién is'pégformeé by.dividing the area under the
graph"inté a nuimber of such‘ﬁaﬁels, appiying the.formula.to each panei
and sﬁmmiﬁg-the resﬁlts; -

The program on the next page carries out the approximate Ealculation
five times, with the area divided into, 10, 20, %0, 40, and 50 panels,
The curve used is a gquarter circle glven'by y = 1 -x?, from x = 0 to
‘x =1, Thoe exact area is /4 ='0,785398163.H

70,
begin
integer 1

real fn spec TRAP SUM(real x1,x2, integer n, real fn f)
-~ roal fn spec eircle(renl a1 x)

cycle i=10,10,50

newline .

print(i,2,0); spzces(2)
pr1nt(TRuP sUM(0,1,i,circlo) 1,9)

rageat

real fn TRAP SUM(real xl1,x2, integer n, real fn f)

real fn spec f(real ¥) -

real h,5UM

. integer i

h=(x2-x1)/n; SUM=1{(x1)

cycle i=1,1,n-1

sm1~snm+zf(x1+i*h)

at

SUM“SUM+f(xa)

result =h*SUNM/2

ond

real fn cirele{yeanl x)
rosult =sq rt(i-x*)

end

end of program

notes (1) The print-out from the program wasi~

(2>

10
20
30
40
O

0.7751205882
0,7821 16220
i 783610780

0.784235034

0784507128

(slowly—approaching the true wvalue of 0,785398163).

The formal function parameter f 13 declared a second

time on line 2 of routine 1§APSUM ‘This serves not asd a declaration nf

the name (this is mnde on the 11ne above) but of the parametar list.

REMARK

There are certain difficulties in the use of functions and routines

as parametors in all the existing compilers, The user should consult

the appropriate reference manuals for further details,

77+

RECURSIVE USE OF ROUTINES AND FUNCTTONS

Routines and functions have the property of being global to any
block interior to the one in which they are declared, In particular,
a routine or function can bo used within the description of that

routine or function itself, This process is called RECURSION,

Example A function RECFACT equivalent to the function FACT' of

page 00 can be defined recursively as follows:-

RECFACT(1)
RECFACT{n)

1
n % RECFACT{n-1)

L}

n

This is easily programmed:-—

integer fn RECFACT (integer n)
if n = 1 then result =1

~result = n * RECFACT (n<l1)

ond

Example OQUICKSORT, Quicksort is a method of sorting numbers (or any
other quantities) into order, - It is generélly far more efficiont than
the techniques deseribed carlier in this book, (For further details

of this mothod, see C, Hoare, The Computer Journal, April 1952)

The basic routine

{a) Selects sume member of the sot’ to he sorted » end uses

this as the 'partition bound'

(b) Partitions the remainder of the set into tWQ groups,
one containing members not greater than the partition
bound, =and the other containing nombers not less than
it. Theso groups are positiocned to the left and r1ght

of the bound as in the d1agram on the next page.

(e) Colls itself recursively to sort each of these two groups,

78.

In the diagram and routine bolow, the partitioning bound, d, has heen
chosen arbitrarily to be the right-hand member,

all these are < d all these

R

N

The partitioning is carried out as followsi-

x|
T
:

(n) Sot pointers 1 and u to the lower and upper ends of

‘the array to be sorted,

{b) Dump the partitioning bound, 1ea§ing a location X(u)

which can be over-written when required,

{c): Move pointer 1 forward until we find a member > 4,
Put this member into location X{u), leaving X(1) froe

to be overwritten when required,

(d) Move pointer u backwards until we f£find n membor < d,
Put this into X(1),.
IE RN R NN

LET RN RN X

- (@) Steps (e¢) and (d) are continued alternately until
pointers 1 and u meet, The bound, d, is then placed
in X(u),

4 possible description of this routine is:-

Note Although, as we have seeﬁ; our first exampls of recursion can

equally casily be written using:a coyele, this is not trus of quicksort,

routine_real_quicksort(real array neme X, integer a,b)

comment sorts elements of reasl array X from X(a) to X(b)

integor 1,u

real d
return if a > b

1=a 3} u=h

d=x{u) .

- 2

1=1+1

B 4.:1;. 1= u

=> 1 unless X(1) > d
X(u) = X(1)

u=u-1

~> 4 ifl=u

-> 3 unloess X{u)<d
X(1)=X(u)

> 1

X(u)=d

real quicksort(X,a,1-1)
real quicksort(X,u+l,b)

end -

-

-

-t

sot pointers

dump partition hound

this section moves
1 forward until

we find a member > d

this section moves
u back until we

find a member < d

partitioning complete

sort from x(é) to X(i-1)

sort from X{u+i) to X(b)

79.

8o,

Example The game of HANOL.

This is another example where recursion greatly simplifies the
writing of a program, ' :

In this game one is given three pegs, and on ono of these pegs
are a number of circular discs of differont sizes, graded Sd that the
largest is at the bottom and the smallest =t the top, The aim of the
game is to transfer the discs to one of the other pegs (making use of
the third as required) in such a way that there is never a larger disc
on a smaller one, Only one disc at & time may be moved,

If the solution to the game for (rn-1) discs is known, then the
solution for n can readily be obtained. Let the pegs be numbered
1, 2 and 3, and let it be required that the n disecs on 1 be transferred
‘to 3, This can be done by transforring the first (n-1) to 2, the last

- to 3, and then the first (n-1) from 2 to 3. In the following program

n is the number of discs which have to be moved from peg i to peg J.

PROGRAM FOR GAME OF HANOI

begin

integer m,i,j

routine spec hanoi {integer m,p,q)
read (n,i,j)

hanei (n,i,3)

routine banoi (inteoger m,p,q)
if m=0 EEEE reoturn

hanoi. {m-1,p,0~p=q) 3 | if p,q are two pegs, other is G=-p-q
newline

priht {p,1,0); éaption $ ~> & 3 print (q,1,0)
hanoi (m=1,6-p~q,q)

end‘

end of program
The output for the case n=2,i=i,j=3 is:-
1 =>2

13
2->3

81,

STORE MAPPING FUNCTIONS

The store mapping function provides the user with the possibility
of renaming storage locations which have previously been named by a

declaration of type real array or integer array. The mothod of use of

a mapping function is almost identical to that of a function, For

example it is declared sither by real map spoc or integer map spec

. depending on the nature of the variables to be renamod.)
Like integer and real -functions, mepping functions can appear in
arithmetic expression, However as the result of the store map is a

yariable, it can aleo be written on the left hand side of an assignment,
'Example

roal x

real ﬁap spoc W(integor 1i,3)
“srsearinpunar

X =W(2,3)

W(i,2) =t +x %3

IEANEER ERLENXNN]

Note This illustrates thoe use of the store map both on the left and

" on the right hand sides of en assignment,

The description of the store mapping function has the form

real map W{integer i,J,seeee)

result = addr {(A{integer expression, integer oxpression,,.))
end

Motes (1) A is the name of tho array to be ronamed,
(2) Hore it is assumed that A is giobal to the description of the
mapping function, Ilowever A could have been included in the
 Tunction heading as a formal paramster of type array name,
(3) Thore is no restriction on the numbexr of suffices that can be
agsociated with either A or W,
(4) The integer expressions that determine the values of the
suffices of the array &4 can be gensral integer oxpressions
involving the formal paramctors i,j,..ss. .
Example
roal array A{(%11000)

roal map spec W(intoger 1)

IR ARSI N SARNENE]

real map W(integer i)

rosult = addr (A {i%i))}

end

82,

Note In the exemple W{(i) and A(i*i) are equivalent, For oxample W{10)

and A{100) ars both valid titles for the same storage location,

Store maps have the great advantage—that.they permit economical
use of storage on a computer, For example 1f a two dimensional array is
symmotric (so that X(i,j) = %(j,i)) then it is completely specified by
?the values X(i,3j) with i > j., It is thorefore necessary to store only
this (lower) trispgular array with a saving in storage space of nearly
50 per cent, An appropriate description of the mapping function might
he

roal map X (integer i, J)

result = addr (A(i*(i - 1)/2 +) if i 2>]
result = addr (A(j*(J - 1)/2 +1i))

end

Note The saving in storage space gained by using mapping functions is
cbtained by sacrificing speed in tho execution of the compiled program,

For thls resson mapping functions are not recommended for generzl use,

 CHAPTER 8 : . GENERAL TOPICS

Input and output of numbers,

Query print;ng.

Input end output of symbels,

List of instructions which can be made conditional,
Library routinee,

Efficieoney,

Checking of programs,

33.

85,

INPUT AND OUTPUT

Input and output of numbers and symbols is achiéved by permanent
routines whose descriptions are held in the machine, These routines
are global to the whole program and may therefore be called without
further declaration and description, Although some of_these routines have

alroady been explained, they are included here for the sake of completeness.

INPUT OF NUMBERS

read (a) Read the next number on the data tape into location a,
.and move tho tape on, ready for the next number.

(Parametor called by name),

read (a,b,c,d) Read the next four mumbers into a,b,e¢ and d reaspectively.
There is no limit to the number of parameters allowed
and each one may be either real or integer, or an element

of either an array or an integer array,

Notes . (1) Although spaces in e program are disregarded, this
is not true on e data tape, where spaces can be used to
separate numbers from one another, MNumbers written in
floating point form (Page 37) may have spaces between
¢ and the exponent, but in all other cames a space or

& newline character indicates. the end of a number,

(2) 1In the case of the instruction read (i,x{i)), the
first pnumber is asgigned to i, The second number is then

read into x(i) where i takes tho value just assigned,

86,

OUTPUT OF NUMBERS

print ({atb+c)/n, i+i, j) Print out the value of the first expression
with (i+1) figures before and j figures
éfter'ﬁhé‘deéiﬁal point, 1f the expression
works 6ut.to contain 1éé§ then (i+1)’figures
before ﬁhé;deéimal point; extra spac?s will be
inserted. If it has more, the extra figures
will be printed, but the vertical aligmnment of
e column of results will be spoilt.

Parameters are called by.VAﬁUﬁ, and =o

may be expressions, The last two must be

integer expressions,

print £1 ({a+b+c)/n,j) Print out the value of the first
expreséion in floating point form, One
figure is printed before and j after the .
decimal point, additional powers of 10
béing indicated by the symbol o, as on
‘ Page 37. |

Note, When using the print end print £l routines, a negative number is
preceded by - and a positive number by a space (to give correct verticsl

alignment of a column), :)

QUERY PRINTING

On 6ccasinns'it is convenient to print out the result of some
intermediate calcuiation. fur‘example, this is often a help in locating
programming errors, A simple method of doing this is 'query printing',
If an assignment to ﬁny §a;iabl§ (bgt not to result in & function) is

follaved by & question mark eage

a=b+c ?
the effect is
(i)} if a is real a=h+e¢ 3 print £f1(a,10)
{ii) if a is integer a=z=b+e¢ 3 print(a,l,0)
Notes (1) In the case of the Edinburgh compiler, newline is

inserted before the printing instruection,

(2) The Tline? ignore queries added immediately before
the first begin of the program cancels guery printing when it is
no longer required,

INPUT OF SYMBOLS

read symbol(a)

skip symbol

a = next symbol

87.

Read the nsxt symbol on the data tape and

place it in location é. Mévé the.dété o
tape on by one aymbol, .

Note (1), This routine can only read one

symbol at a time, unlike the read routine

which can have any number of parameters,

~Note (2), a must be an integen variable

or an element of an integer array,

Move the data tape on one symbol, without

- reading anything into the machine, =~

Read the next symbol into integer location

"a, without moving the data tape, (8o the

same symbol can be read in a second time)
Note next symbol iz a permanent integer
function, and can thus he used'in intégér*
oxpressions end conditions,

For example:-

=> 7 if next symbol = '#!

REMENMBER When reading symhols, both spaces and newlines count'és

symbols, whersas, when reading numerical data they simply mark the

end of & number,

DUTPUT OF SYMBOLS

caption.cesnves L]
print symbol()
é space, spaces

newline, newlines

L S A

Have already been adequately

‘discussed on Pages 1Q and 3.

88,

CONDITIONAL INSTRUCTIONS

1t is convenient to collecttogether & list of all types

of inatruction which can be made conditional (by means of en if or

ah Uniéas elsuse),

Tree
(a8) Aésignmént instructions
(b) Jump instructiomns

(c) Routinée calls (including

permanent routines)

(d) '6Bptiﬂno.-.;;éo-

(8) Tesult = secenes

(£) stop, return

Notes (1)

Example with condition
T
a=bic? if x=0

7 it xp1

->8w(i) unless j =3

interchange{a;b) if a > b

print{a,1,0) unless a = O .

if x # 0 then caption O.K.-

"if a > b then result.= 17

"stop if n<Oorm=2

return if i = T*!

c¥clo..ses , and repoat do not appear on the list,

They are not Instructions, but Separators {see classification

on page 15).

(2) The if or unless clause has the same effect whether

written before or after the instruction, except in the case of

cagtion srrnan

caption OK, if x # 0

If the example at (d) above had beoen written

the iz_élause would have been treated as part of the text of the

caption, giving an output, irrespeective of the valus of x:-

O.K,ifx#0

tARY ROUTINES
Routines to earkﬁ out.;anf oi‘fﬁerétandard computational processes
have been written in Atlas Autocode, ﬁéiﬁg these within one's owﬁ
program saves econsiderabls prbgramming'effoif; The reader Bhouldioﬁtain

details from his Computer Unit,

EFFICIENCY o

We glve below some suggéstions which may ass;st the reader to
write his programg in a form which will make efficient use of machine
time, Ho should, however, keop a sense of proportion, remembering that
his own time is also wvaluable and that the first objective should be to

make his program work successfully,

1.

those which are executed many times.

The parts of a program in which efficlency is important are
For example, any minor 1mprovament

made in the area (A) below w111 cause a saving on each of the 10,000

times this section is executed, -

oyele i=i,1,100
cycle 3=1,3},100
I T ILIYISER

(A)

SEPRIECRANITET RS

Yt s ud

tnt.ilnilituhio
ropaat

rageat

(2).

Division takes longor than multiplication, so that O.1*x
is computed mors guickly than =x/10, '

(3).
tines, it should bo evaluated once and stored, as in the right-hkand.

Whenever some part of an exprossion 'is required many
veraion below,

d=x*n/180

cygle i=1,1,100 eycle i=1,1,100

ACL)=A(Ly*xxi 2180 F{iy=A(i)*d
£egaat peggat

(4). It takes longer to move numbers in-and out of array clements
than simple variables, ' Again, the right-hand version bolow is the

more efficient,

x(i, =0 d=0

cyele k=i,1,15 cyele k=1,1,15
T4, P=x(1, 3 + ¥(k) d=d +¥({k} = ~
ropoat reggat

x(i » J)Hd

8g,.

9o,
(5)« it is far quicker to calculate numbers inside the

machine than to read data in or print answeis ouf. Given some

. reading taken during an experiment every i/10 sec

time readipg

12,0 , 2.137 -
12,1 3.65%7
12,2 _ .. 6,648
sesas “aein
59.9 74547
to.0 . - 2.652

it is wasteful to read in the left-hand column at all, We can
read the first and last times (12,0 and 60.0), together with the
interval (0,1) and compute the intervening times,

§imilarly, output should ke reduced to the minimum that
the programmer really wishes to read, &pért from the saving of
machine time and ponéy, the computer can disregard all
uninteresting results (which have to he.édéQuatély defined) far
more quickly than we can tear up unwanted sheets of paper and

assign them to the waste paper basket,

(OR When available, a Line Printer is a more eificient
method of output than punched paper tape, With the Lipe Printer,
answers should be printed right ccross the page, as the cost is
proportional to the number of lines printed, (4 line of output is
limited to 120 characters),

. When fault finding, use 'quexry printing' with discretion,
Query piinfing within program loops.iS~a:common cause of large

guantities of output which are never read,

CHECKING OF PROGRAMS

“The need for cheécking of programs cannot be overemphasised,
& check sheet to assist. the reader-to avoid some of the more common

errors is given on the next page,

1.

-

3.

7.

G

.10-

11,

12,

13.

14,

15.

16,

PROGRAM CHECK SHEET

General details Are all the special words of the language

correctly undexrlined ?

Have I a corresponding number of

(a) begin / ond (also routine,,.,./ end, ete) *?
(b) cycle / ropeat (and at corresponding levels) ?

Declarations (a) Have I usod the same name before at this level ?

(b) Have I got my commas and colons correctly

written in my array declarations ?

in the

(c) Have I assigned values to the variables used
calculation of array bounds ?

Nemes: Have thoy been declared (at an appropriate level) ?

Labels Have they been used before at this level ?

Jump instructions Has the label been set at this level 7 If a

switch label, has it slso been declared {at this level) ?

Expressions

(a) Do left and right brackets eonrrespond ?
{(b) Have I any real quantities or functions being

assigned to integer variables or used as an exponent ?

{c) Can the expression get too large at any

intermediate stage or in the final walue ¢

Array elements Are the suffices all integer exprossions, and

CAN THEY EVER TAKE VALUES OUTSIDE THE DECLARED BOURDS ?

Cycles (a)
(b)
(c)

Routine and

Is the control variable.an integer ?
Aro the 3 oXpressions all integer expressions ?
Is expr(3)-expr(il) a non-negative multiple of expr(z) ?

function calls Has the routine/function been

declared and describod at an appropriate level, and are the
actual parameters of legitimate type and correct in number ?

Functions

Division
dangorousl

Have I given a2 rosult ?

(z) Am I sure the denominator can never be zeru or
y close ta zero ?
(b) In integer expressions on KDF G, will all

intermediate results be integral ?

Sguare Roots Can the argument ever he negative 2

Logarithns

Stopping

Goneral

Can the argument over be negative or dangerously small ?
Have I arranged for the program to stop ?

(a) Have I supplied & valid Job Heading ?
(b) Have I supplied data, and the right smount ?

92.

Arrays 17

Dynamic array bounds 55(3a)
ArTay-name parameters 68
Multi-suffix arrays 49

Arithmetic expressions,
soo 'Expressions!

Blocks : 21,55
" with Routines _ by
caption - 19,31
Cotments 7 20
Campiler 6,9(1)
Computers: basic operations 75
" Conditions 23,30,88
Constants 37
Cycles ' 43
bata 9
Declarations 16
of Arrays ' 1y
Of Routines 63
Efficiency 89
Examples of progams
Average of numbers 24,45
Counting symbols 33,47
Examination results 4%
Function-type parameter 7%
Hanoi 8o
Ordering of integers 58,7
Quicksort 77
Expreossions : 37
Functions ' 40
Integer or real 41
Precodence of operators 39
Floating point constants 37
Flow diagram 3
Functions
Dofined by Programmer 70
Mapping functions S
Pormanent . 40
Global variables 57
Hanoi, game of ' 8o
Input 18129185}87
Order of program & dats 9
Instructions
Assignment 18,30,42
Conditional 23,88
Input 18,29,85,87
Output

19,31,85

93.

Integor expressions
Integor variables
Job heading

Junmp instructions

Labels
Switch labels

Library routines
Line printer
Lines'
Local variables
Mapping functions
Names
¥ewlines
Bpefators, precedence of
Parameters of routines
Called by name
. Called by value
Routines & fne as parameters
Query printing
Real -exprossions
Real variables
Recursion
result
return
Routines
Library
-Recursive use
With parameters
Without parameters
Soparators
Sﬁaces
Symbels
Assignment of
" Conditions
Correspondence to Iintegers
Input
Output
Switch lobels
Underlining
Variables
Integer

Local and Glohal
Real

i

