P 52

are moved in and out, is recorded in your logoff message. .

The disc files are where your programs are remembered when you are
logged off. Procedures you want to be remembered are put onto the disc
by the LOGO command SAVE. They are copied from the disc into the core
store by the LOGO command LOAD.

Because space on the disc files is expensive, EMAS files m:ﬂ v
not been used for four weeks are automatically archived onto nawtic
tape. You only have one EMAS file, if it is archived it can be re-
covered and put back onto disc by the EMAS command RESTORE. This RESTOR-
ing is necessary because the file cannot be LOADed directly from 'archiw.

For more information get the (out of print) EMAS User Manual or type
HELP at moniter level, after the COMMAND: prompt.



nd Assessment Methods

the methods used to teach the course and assess
Mopim‘.ms on the success of these methods see Appendix 6
:stionnaire.

h course ran for three terms (of 9, 9 and 6 weeks) and there were

lecture slots per week. Because of the difficulty of finding
)riate background reading, the lectures were accompanied by the

I e handouts bound in this volume. Not all the lecture slots were

1 for formal lectures. Some were used for: class discussions;

problem classes; student presentations and an introductory teletype
session. These are explained below.,

~ Class Discussicns

Three of the slots were used for holding general discussions on: Can
~ Machines Think? Why is Understanding Natural Language so Hard? The
Scope and Limitations of A.I.

mlm Classes

Because some of the skills we were trying to impart were too new to
some of the students for them to make much initial progress, unassisted,
we set aside some of the lecture time for them to do exercises, with the
lecturer on hand to give assistance if ‘needed,

Student Presentations

Each student was required to give a 25 minute talk on an A.I. topic

of his choice, usually his project, to the whole class.
troductory Tele e Session

The whole class was assembled in the terminal room for the second
slot and nursed onto the computer by a large number of staff. A series
°L games and simple copied commands were devised for this (see pages P6-
¥7) .
Audic Visual Aids
The overhead projector was universally used with prepared trans-
2 cies. Various films were shown including: Winograd's "Dialog with
& Robot"; The MIT vision film "The Eye of a Robot"; SHAKEY and the
dinburgh Car/Ship assembly £1ilm.




Weekly tutorials were held in the first term with small (i.e, 2 - §
students), mixed ability groups. Exercises were set and marked by the
lecturers, and were used by tutors as a basis in a variety of ways
according to their style. These tutorials were replaced by individual
project supervisions:’ in!the ‘second and third: terms,

Teletype sessions

Students were expected to put in about three hours a week at the
terminal in interactive computing. This computing often involved prep-
aration for tutorials. The terminal room was shared with the Computer
Science Department. It could be used at any time, but' the students were-
encouraged to use it during the four hours when an A.I., demonstrator was
present, ;

Assigned Reading

This was kept to a minimum (approximately one hour a week) + because
of the lack of suitable material and the pressure of other assigned work,
The general reading list is given in Appendix 3, Specific reading is
included in the handouts, usually at the end of each section,

Reading Fortnight

At the end of the first term it became apparent that there were wide
discrepancies in the progress being made by different students, It was
decided to suspend all lectures and tutorials for a fortnight and run
individual supervisions geared to each students needs,

Assessment

Assessment was by one three hour written examination and a project,

The marks were split on a 60 (examination) - 40 (project) basis, Sample
examination papers can be found in Appendix 4, Projects could be of
three types: a programming project; the design of a program or a survey
of a small set of A,I., programs, Students were expected to spend about
30/40 hours on them and write a report of 3-5000 words (some students
spent much more time than this). The list of project titles for 1974/75
~*+afi@:1975/761is given in Appendix 5.
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2 - A Rough Timetable

r of Lectures:

lst term
9+ 6

2nd Term
2 weeks

11

Subjact

Representation of Knowledge (9 lectures) and
Programming (6 lectures) in parallel,

Introductions to : Natural Language (2);
Vision (3) and Learning (2).

Class Discussion "Can Machines be Intelligent",

Natural Language

Reading Fortnight (no lectures)

Natural Language (including 3 guest lectures by

Yorick Wilks, and class discussion on Natural

Language) .
Representation of Knowledge

Vision (4) and a Programming lecture.

Vision
Learning

Student Presentations

Concluding Class Discussion.
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3 - General Reading List

(e 3974/1
In addition to the recommended reading on specific topics (to be
found in the lecture notes), the students were required to read the
following general references.

~ Minsky, M. and Papert, S. 'Artificial Intelligence Progress Report'.
AI Memo No. 252, MIT, January 1972,

Nilsson, N.J. 'Artificial Intelligence'. IFIP Congress 1974, August,

Turing, A.M. 'Computing Machinery and Intelligence' in Computers and
Thought (eds. Feigenbaum, F.A. and Feldman, J.), McGraw Hill (1963),
pp 11-35,

Feigenbaum, F.A. 'Themes in the Second Decade'. Information Processing
68, Vol. 2, (ed. Morell, A.J.H.), North Holland (1969) , pp. l008-22.

Longuet-Higgins, C. 'Artificial Intelligence'. Br, Med. Bull, vol.27,
No. 3, pp. 218-221, (1972).

Four xerox copies of all reading material were made available in a
central place (because this material is hard to track down and in short
supply) .
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4: Examination Questions

Here are the papers set for: the class examination 1974/19 ;

the degree examination 1974/1975 and the degree examination 1975/
(There was no class examination in 1975/1976).




DEPARTMENT OF ARTIFICIAL INTELLIGENCE

UNIVERSITY OF EDINBURGH

ARTIFICIAL INTELLIGENCE 2

CLASS EXAMINATION

§
)
¢

Monday 1Oth March 1975 9.00 a.m. - 12 noon’

Instructions to Candidates

: Answer'any FOUR gquestions. All questions carry egual weight.



Give a symbolic description of figures A, B and C and description
of the similarities between corresponding objects in A and B.

(b) Give a symbolic description of the rule which would change figure
A into figure B.

(e) If the description of the rule were applied to the description of
figure C what would be the description of the resulting answer
figure?

(d) Suppose figure C had been

G ] =

What goes wrong when we try to apply the description of the rule to the
description of Figure D? How might we amend the rule description so

that it applies to the description of D and produces a description of
figure E?

L

Questions
2.

(a) What tests does Roberts' program use in order to select a picture
fragment for matching to a model?

(b) Show one possible decomposition of the scene depicted overleaf and
one of the intermediate stages which would result from applying
Roberts' program?



(e)  What are the principle virtues of Roberts' approach compared to
the way other programs you know do scene analysis? e Sramp

3
Times of day are expressed by phrases such as:-
twelve fifteen, three o'clock, five thirtyseven, a quarter to
three, half past ten.
(a) Make a context free grammar to describe such sentences.
(b) Give the parse trees for the above phrases.
(c) Indicate by writing typical procedures how you would write a
LOGO program to take a list of words and return YES or NO
according toc whether it is described by your grammar. (You
may assume procedures CHECK and TRY are provided) .

4.
Discuss what is meant by:
(a) A Look-Ahead tree.
(b) A weighted sum of feature scores.
() Mini-Maxing.
Illustrate your answer with reference to any board game of your choice

except draughts (checkers).

5,

Explain how a syntactic production rule may have a semantic rule
attached to it to compute the meaning of the phrases generated.
Illustrate your answer by referring to the meanings of various kinds

of phrase in the blocks world program described in the course.



6.

Discuss Guzman's use of picture junctions and linking

a picture of a polyhedral scene. What are the limitations
approach?

s

(a)  Using the LOGO inference system translate each of the following
sentences into a procedure call corresponding to its meaning:

The Pope is good

John Wayne is good

John Wayne is courageous

Anyone who is good and courageous is a hero

Who is a hero?

Suppose the translations of the sentences above the line were used
to set up a database and the translation of the sentence below the

line were used to interrogate that database. Draw the search tree
of that interrogation.




UNIVERSITY OF EDINBURGH

FACULTY OF SCIENCE

ARTIFICIAL INTELLIGENCE 2
—_————

Monday 9th June 1975 2.00 p.m. - 5.00 p.m.

Examiners:

Chairman B, Meltzer
External A. Sloman 3

Instructions to Candidates

1 Candidates in the third or later years for the degrees of
B.A. (Arts), B. Com., B.Sc. (Social Science), B.Sc. (Science)
and LL.B. should put (3) after their names on the script book.

- Answer any FOUR questions. All questions carry egual weight.



Using the LOGO INFERENCE system:

(a) Give a partial symbolic description of the above drawing of a face
sufficient to answer "yes" to the following questions, by direct

data-base lookup:
Is the mouth in the lower portion of the face?
Is the left eye in the upper portion of the face?
Is the nose in the centre of the face?
(b) In addition represent the laws that:
Anything in the centre of the face is also in the middle
portion.
Anything in the middle portion of something is always above
anything in the lower portion.
Anything in the upper portion of something is always above
anything in the middle portion.
(c) Represent the gquestion:
Is the nose above the mouth?
Draw the complete search tree of its interrogation of the
database.
{a) In addition represent the law:
To infer that x is above y show that x is above z and z is
above y.
and the question:
Is the mouth above the nose?
Draw some of the search tree of this interrogation, What
problem arises? How might it be overcome?
Does your solution involve changing the LOGO INFERENCE
system?



2.

Suppose that a computer program is to be written to take in simple direct-

ions such as the ones below and check their correctness from a street map

from a given starting place.

(a)

'To get to the school, take the first road on the left, then the
first road on the right after the bridge'

'To get to the hospital, take the second road on the left, then
the first road on the right'

'To get to the station, take the fourth road on the left'

'Te get to the bridge, take the first road on the right after the
school'
Write a context-free grammar to generate directions such as these,

using the vocabulary in the above sentences.

{b) Explain how the following simple street map might be represented in
LOGO so as to be useable as a semantic model for such a checking
program. (Hint: recall the list structure representations of the
state of the blocks world described in the course).

s 2 &7 s
Q 5 Q H
3 8 g &
= <]
e g g
3
ECEDOL
ALPHA ST
ERIDGE
- TR i
[Eospr'rm..l
BETA ST
STATION 1

GAMMA ST




3.
The "Eight-Puzzle” is played on the 3 x 3 tray illustrated below:

~ §§§§ (¥

Mounted in the tray are eight 1 x 1 square pieces, which are free to slide
left, right, up or down into an empty sguare. The standard position is
illustrated in which the centre square is empty and the numbers are arranged
in numerical order. The puzzle is played by initializing the pieces in
sume other order and then trying to get them back intoc the standard position.
(a) Explain how a course of play can be represented as a search

through a tree or graph.
(b) How would this representation help you to design a computer

brogram to solve eight-puzzle problems?
(c) Suppose you were writing such a program. How could you

represent in LOGO: states of the tray and moves. Explain

in English (or LOGO) how you would apply moves to states to

produce new states.

4,
"The correspondence between 2D features and 3D concepts is central to the
design of any program for interpreting pictures of scenes". Discuss, giving

a critical account of relevant aspects of wvision programs you know of.

5.
What difficulties arise in attempting to write a computer program to under-

stand children's stories? Describe some mechanisms which have been proposed
to tackle them.

6.

Explain briefly (one paragraph each) each of the following:
(a) credit assignment problem

(b) hill climbing

(c) near miss

e |




(d) Winston's notion of "appropriate generalization"
(e) discrimination tree

(£) diameter-limited perceptron

7.

Discuss up to four of the following statements. You may write at

length on one of them or more briefly on two or more.

(a) Representing the effects of operators by add and delete lists
solves the frame problem.

(b) Line-verifying is better than line-finding.

(e) Alpha-beta pruning is a way to obtain a gain in efficiency in
exchange for an increased danger of overlooking the best choice.

(a) Since a program can now do analogy problems it makes no sense to
use them on human intelligence tests.

(e) Attempts to model human intelligence on a computer are doomed to
failure since the human brain and the digital computer are based

on different hardware,



UNIVERSITY OF _EDINBURGH

Wt e
‘-5 .-I"' =2
FACULTY oF SCIENCE
ARTIFICIAL INTELL IGENCE 2
JMenday :  7th June 1978 2,00.p.m, - 5,00.p.m.
Examiners: Chairman B. Meltzer
External A. Sloman
INSTRUCTIONS - TO CANDIGATES
de Candidates in the third or later years for the degrees of

B.A. (Arts), B. Com., B.Se. (Social Science), B. sc. (Science)

and LL,B. should put (3) after theiy names on the scxipt book,

2, You have been provided with a copy of the "AIZLOGD User's

Guide and Manual",

e Answer any FOUR questions, &)l questions carry equal weight,




1.

The following centext-free grammar generates linguistie deseriptions

of chese pieces in terms of their colour and board position,
Piecename -> 'pawn

Piecename -> ‘'king

Colour => 'black

Colour -> 'white

Piece => Piecename

Piece -> Colour Piecename

Nth -> "Eirst

Nth -> ‘eight

Position -> Nth ‘rank

Fosition ~> Nth 'file

Position -» Nth 'rank 'and Nth 'file
Description -> 'the Piece

Description -> 'the Piece '‘on 'the Paosition

(terminal symbols are quoted)

(1] -.-Wrire out 5 descxiptions generated by grammar.

The current state of a chess b&ard can be represented, e.g. in
LOGO, by a list of guadruples, where each quadruple represents a
piece by a list of four elements, namely

PIECEKEW£‘which is "PAWN Of ... Or 'KING

BLAWHI which is 'BLACK or 'WHITE

RANKNO which is 1 or ... or 8

FILENO which is 1 or ..., or 8

A chess playing program accepts linguistic descriptions of the
above form and needs to find their meaning ralative to the current
state, For example, in the current state "The pawn on the first

-rapk" might refer to [PAWN BLACK 1 8],

(ii) what LOGO or other data structures could you use as the
meaning of each of the six kinds of phrase: Piecename, COlowt; «sup

Description?




(1ii) How could you write Procedures to calculatzs the meaning of
each phrase from the lmeaning of its components ang (if necessary)
the current state? (Say what these procedures would have to do;

¥ou need not write them.)

2. "Deduction is a formal, logical procedure with well-defined .~
xules’ and can he.carri&a*outpby & computer program, o
Induction, on the other hand, by its very nature involves a
creative component and cannot even in principle be done by a
machine,"

Discuss,' with reference to computer programs you know cf thaL
claim to do inductien,

3. Below is a typical "Geometric Analogy Problem",

SLEl

e

= e 3 < 5

"Find the rule by which figure A has been changed to make figure B.
Apply the rule to figure C, Select the resulting figure frem
figures 1 -~ 5, »
: F
(a) Explain, briefly, how Evané' computer program, ANALOGY, cdould
solve such problems,

(&) Give an example of a geometric analogy problem which Evanﬁ'
i
brogram would be unable to solve and explain why.




%

4. (i) Explain the distinction between forvard inference and
backward inference, giving as an example some AT tasks &
which they might be used, Lad, -

(ii) What problems arise with the use of (a) forward inference
and (b) backward inference? Illustrate your answer with
examples, Suggest ways in which these problems might be

overcamne.

5 "Consider the task defined by the following diagrams,

Rooma RoomB Rooma RoomB
Doorl :
4
A Robot
Roéﬂ: I E D:Eioxl

Initial State Goal State

The initial state is described by:

[IN ROBOT ROOMA] [IN BOX1 ROOME] [oPEN DOCR]

[IN DOOR1 ROOMA] [IN BOOR1 ROOMS] [CONNECTS DOOR1 ROOMA ROOMB)

The goal is described by:

[NEXTTO ROBOT BOX1] [CLOSED DOCR]
The Robot has 3 operators, described by: ;

[GoTO 20BJ]  Puts the rosoT next to the OBJ, and not next to
anything else.  (Represent this latter by putting [NEXTTO ROBOT *]
in the delete list)., It is applicable if the ROBOT and OBJ are in
the same room.

[GOTHRU ?DOOR]  Puts the ROBOT in the room which the DOOR
connects to his present room, Initially the ROBOT must be next to
~thEZGEen “DOOR. -

[CLOSE ?DOOR]  Closes the open DOOR. The ROBOT must be next
to the DOOR.

(a) . Describe the 3 operators by drawing an Operator Table giving
their breconditions, delete and add lists, _




(b) Describe a plan for achieving the goal, and draw a m
giving symbolic descriptions of the sequence of states which
would be achieved if the plan were executed.

(e) What is subgoal protection? Why is subgoal protection
sometimes needed by planning programs? If a rxobot plan
formation program, which used subgoal protection, was given
the above task, what difficulty would it encounter? How
might this difficulty be overcome?

"A stimulus fragment takes its meaning from a consideration of its
neighbouring fragments; 4i.e. from the context in which it occurs®.
Discuss possible mechanisms for achieving this principle of context--
sensitive analysis, drawing examples from A.I. VISION programs with
which you are familiar.

Can computer programs be used to model human intelligence? At
what level can they be compared? Illustrate your answer with
reference to GPS or some other program designed to simulate
human behaviour.

Discuss the relevance of AI programs to either philosophy, psycholegy
or linguistics,
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Appendix 5: Student Project Titles

1974/75

Student

N.
e,

A,
T.
i
2
D,
P.
K.

*Also available as

1975/76
Student
R. Aikman
J. Allan
M. Bennett
M, Bottomley
K. Chisholm
- Coldham
. Dumne
. Doe
. Giles
V. Keir
J. Kennaway
E. Lawscon
G. Morris
M. Ferguson
M. Schairer
S. Wrigglesworth

Conliffe
Davie

Fletcher
Gayle
Holtzman
Malcolm
Paterson
Reddish
Schroeder

Title
GRIP: Graphics Routines with Interpretive Parsing

Relation of work in AI and Psychology in Visual
Perception

A Bidding Program in LOGO

BUILD; A Lesson on Anarchism in the Blocks World

A Program for Key Determination

Maze Traversing

The imitation Game: An Anti-Behaviourist Approach
Approaching Perception

Models of Linguistic Description and Implications
for Computer Programs invelving Natural Language

DAI Research Report No. 20.

Title
Generating English Sentences
Question Answering
SUBSTITUTOR - CAI error analysis

Machine Translation reviewed: evaluation of
selected programs

DRAFT4 - A Draughts program

Date (and time) Translation Quizzing Machine
Two Move Chess Problems

Fox and Hounds

Natural Language Analysis Using Case

Fugue Generation

Geometry theorem proving

A Puzzle Solving System

P.A. Learning Models

Translation from Staff into Tablature (Music)

Word into sentence: parsing an agglutinative
language

A program to play Backgammon

The project reports are kept in the Library, Department of Artificial

Intelligence, Forrest Hill.
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Appendix 6: Student Questionnaire Returns 1975/1976

In order to get feedback to help us improve the course we issued a
questionnaire at the end of each year. The questions asked in 1975/76,
together with a brief summary of the replies,are given below. All 21

students who started the course were circulated - we received 12 replies,

Student_guestionnaire

In order to get feedback to enable us to plan net years course, we
should be grateful if you would complete this questionnaire and give us
your comments on any aspect of the course. Please be completely frank.
1. How did you find out about the course?

Original source: Director of Studies, 2; Faculty Programme, 5;:

A Friend, 2; Noticeboard, 1; Lecture in Computer Science on AI,2.

2. What factors influenced your decision to enrol in the course?

Most frequently mentioned factors were: Locked interesting;
Previous interest in AI; General interest in computers;
Relevance to some other subject.

3. What do you think the objective of the course was? Did it succeed?
Most answers centred on the "Introduction to AI"™ idea, mentioning some
aspect like: past achievements, current developments or scope and
limitations, A few answers mentioned our specific aims of teaching
the methodology or establishing the relevance with soft sciences.
Three gave no answer at all, Nearly everyone thought it succeeded,

4. Did you find the subject matter of the course
(i) Interesting?

Nearly everyone found it interesting, some said “very".

(ii) Demanding?

Reaction was mixed, from a non programmers "I still found myself
completely out of my depth" through “"Some of the programs particularly
in Natural Language (parsing), were difficult to follow", to an ex-
perienced programmers "Most of the work I did was fun rather than
‘real' work". Most people found it time consuming (too many exerciseﬁ)
whether or not they also found it demanding.

(1ii) Relevant to other subjects you are studying (please specify)?
People also doing computer science or linguistics found AI relevant to
those subjects. Otherwise a fairly negative response (e.g. not

much - but should it be), apart from one reference to psychology,




Afd.

How do you think the teaching and assessment could be improved?

As an aid to thought we have listed the teaching and assessment
methods below.

(i) Formal Lectures

(ii) Handouts

Much appreciation expressed. They found lectures well prepared and
were able to give full attention to following them: "Handouts were
better than those I got in any other course so far - complete and
readable - and most of the lectures appeared to be well prepared".
(iii) Problem Classes

(iv) Class Discussions

More wanted of both. Several criticisms levelled at class discussions
as being tod infrequent, too general and class too large.

(v) Student Presentations

Welcomed but too late in term for feedback to be incorporated in
projects.

(vi) Budio Visual Aids

Compliments expressed on films, videcs, overheads etc.

(vii) Tutorials

(x) Other Assigned Work

Strong feeling that these should continue into second term. A sug-
gestion that they should be streamed by programming ability.

(viii) Teletype Sessions

Too much programming in course: More personal tuition wanted.

(ix) Assigned Reading

Several suggestions for improving the method of access.

(xi) Informal contact with members of the department

Better than most departments but could be better, More information
wanted about research work of department.

(xii) Examinations

(xiii) Project

Two requests for an extra class examination, balanced by one request
for continuous assessment and one for exemptions for deserving cases.
Opportunity to do project much appreciated but not enough time in
course to do it justice (e.g. "why give 30-40 hours as a guide-line
and then show previous examples which must have taken their authors

about twice as long?").

R . RS e

i
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A23

(1) Was this your first opportunity to program a computer?

(1i) If“so how hard did you find it?

(1ii) Did any particular aspect of learning to Program give you
trouble, e.qg., a particular concept, a misconception you
harboured, a particular type of bug? (please specify),

People with no pPrevious experience found Programming wery hard

(typical comments were "very, very hard"; "Bad", etc.). Un-

fortunately (and significantly) they were unable to identify

particular areas of difficulty, but just said "all of it (except
the very early programming)" or “everything",

Please record any other comments you wish,

Mainly used to expand on above points, General mood was that

Course was good (e.g. "10/10 for effort put into 5(1i,vi,vii,viii,

ix, xiii) etc."), but we had gone overboard with the imparting of

specific skills (e.g. Programming) , to the detriment of gensral

philosophical discussion (e.g. "more a series of intellectual
exercises"; "even after deciding to drop the course it was

Stressed to me that AT was not a mathematical-type subject - but

it isl"; "lack of spontaneous class discussion") . Some pointed

out that the proper balance was difficult to strike while the class

continued to contain a mixture of soft and hard scientists (e.g. "I

" don't think: the same“course should apply for people who have done

computer science and also for people who have done nothing of this
sort before"; ‘"more Places should be allocated to Psychologists,
Philosophers, Linguists and other non-mathematicians") .




Appendix 7: Errata

Page Line Correction

RK1 figure Small rectangles should be squares

RK1 5 "fule" should be "rule"

RK1 Ei delete "could involve some judgement”. Insert

"either straightforward or go back toc beginning".

RK23 5 Insert line "100 TRYMOVES"

RK24 14 Insert "AND STOP" at end of line.

RK42  table "table" should be "cable"

RK44 5 "searched" should be "grown".

RK44 figure tree all wrong — replace bottom half with:

Apply Operator
"travel by train" to
"me at home"

meth
Reduce Difference Apply Operator
of "location" “"travel by train" to
"me at station"
&method 2
method 2-—3
Apply Operator Apply Operator
"travel by train" to "travel by train" to
"me at home" "me at station”
ocop (so backup)
RK46 2 Insert "RESULT" between "60" and "TRANSFORM".
RKE6 13 "from" should be "form"
NL1 17 After 'IF :N=1 THEN', replace "RETURN' by 'RESULT®
NL1 20 After '2@" insert "RESULT'

NL3 20,22,24 Replace 'UMPHUM' by 'UMPHUN'
NL& 6 Replace '"semantics without® by 'syntax without',
NL4 end Insert ' (This grammar example is essentially due to

HiCs Longuet-nggins} "
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end

-9
15

12
14
11
13

should read '(3) {theoreticall it goes into an
indefinite recursion if given'

Insert footnote 'LOGO programs given in lower case
have not been tested in their present form'.

after '[[a c] [B D] [C D] insert vix D'

Should read

11¢ IF NOT EMPTYQ :XS THEN P 'CORRECT ELSE P ‘LIAR
Before line starting '19 NOUN' insert line

'¢5 IF EMPTYQ :STATES THEN resurt [1°

Before line starting 11¢ JOIN' insert line as above.
Replace ':(dimdf :b2)" by '+ (dimdf :b2)'.

after '[RED BLOCK ON' replace 'A' by ‘THE" .

After 'mkprop <(adj)> insert t< (simpnounphr) > '«
Insert "Pressing 2 keys at once causes locking.
Unlock by pressing bar to right of space bar"..
Insert quote mark in front of LIST.

Change 3 occurrences of "OUTPUT" to "RESULT" «
Change 2 occurrences of "OUTPUT" to "RESUL e
Little men diagrams Wrong. output of men on right
should go to eyes of men on left (not ears).
Change "parameters" to "arguments”.

Change 2 occurrences of "input" to "argument” .

Insert "and BUGS" after "LIB 'BUGS".
Insert quote in front of LIST.
Insert quote in front of PARA.
Change 'PARA to :PARA.

(Note: for consistency all references to PARAMETER
would be better changed to BRGUMENT) .

Insert quote in front of LIST.
Insert :LIST after SECERR.

Change "input" to vayrgument” .
Insert quote in front of NUM.

P e e —
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lecture notes of the course, Artificial
University of Edinburgh in the academic
‘of the Department of Artificial Intelligence.
was introductory, requiring no previous
mputer Science (The "2" is a code meaning "not
The course attracted students from: psychology;
_ osophy; computer-science; mathematics and many other
. It has now run for two years.
a2 new and multi-disciplinary course, like AI, is very
though we put a lot of work into it, we are still conscious
1 for improvement, especially in the teaching of programming
al science and arts students. By binding our notes into this
we hope both to promote feedback and perhaps save others some
The notes have, however, not been edited for a wider audience
and still contain parochial references.

~ Rather than attempt a broad survey of the field we have tried to
show how AI programs are built. This was done by taking a series of
tasks; proposing and discussing ways of modelling thems then extending
- and debugging these models. Students eventually tried this for them-
selves in their projects. A lot of emphasis was placed on the acquisi-
tion of skills e.g. programming, writing robot operators; writing a
context free grammar; line labelling polyhedral scenes etc. General
issues were delayed until the students had acquired some grasp of the
subject. ‘Most discussion of these issues took place in class dis-
cussions and student presentations and so is not recorded in the notes.
These notes are divided into five sections: Representation of
Knowledge; Natural Language; Visual Perception; Learning; and Pro-
g ming . Page numbers are consecutive within sections and each has
appropriate prefix (e.g. RK39). The lectures were not given in
s order. In particular thelnapresentatim of Knowledge and Pro-
ng lectures were closely integrated. The actual sequence of
5 is given in Appendix 2.




two years the course has been running, a tremendous

people have had a hand in it. We would like to thank the

us: demonstrators; ‘tutors; project supervisors; lecturers

niners, without whom it would not have been possible.

ough it is not possible to mention everyone, we would like to

:s lﬂmla out: Peter Buneman, the original oxganis;r_; Colin McArthur
m Rosemary Robinson, who kept LOGO running; aaron Sloman, our
external examiner; and last but certainly not least}\_t.he secretaries:

Jean, both Margarets, Peggy and Eleanor, who tirelessly produced this

huge volume of notes.
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R il shi

: : Instructions: "Find the fule by which figure A has been
changed to make figure B. Apply the rule to figure C.
Select the resulting figure from figures 1 to 5."

Questions to ask yourself

Can you do it?

Is intelligence needed?

Could we explain to someone how to do it?

Could we write an instruction bookléet?

Would it be intelligent if a machine could do it?
If it could do some such tasks, but not all?

First ReaiE

Consider the original instructions.
Focus on the imprecise parts of the instructions.
Finding rule - creative act?
Applying rule - pmb_nbl:.r' straightforward.
Selecting best answer - could involve some judgement.
Fi the Rule
Because the problem is solved "in the head" the rule must apply
to some description of A and produce a description of B.

1.
2,
3,

4.

Make a description of A.

Make a description of B.

Compare descriptions to find what must be done to one
to produce the other.

Use English for descriptions.



A is "A rectangle with a triangle on its perimeter"
B is "A rectangle with a triangle inside it"
Rule is change "on its perimeter" to "inside it"
C is "Arch with a square on its perimeter"
. - applying rule, answer should be
"Arch with a square inside it"
and indeed answer 3 is just this.
ing Rule Finder - Symbolic descriptions
But suppose we had described B as

"A triangle inside a rectangle"
or "A rectangle surrounding a triangle"
‘this simple rule would not be found.
We need some unique form for the description of a figure.
‘e.g. [inside triangle rectanglel
Where

1. We drop all superflucus words e.g. "a" and limit
ourselves to the objects mentioned (triangle,
rectangle) and the relationship between them
(inside) . :

2. We decide always to replace all descriptions using
"outside", "surrounding" etc. with the equivalent
description using "inside".

3. The objects are put in some fixed (but arbitrary)
order. In our case the inside object (triangle)
always comes first.

The description [inside triangle rectangle]l will be called a
symbolic deacript:l.on. The first word (inside) is sometimes
called the predicate and the remainder (triangle, rectangle)
its arguments. The square brackets are currently just for
punctuation. However, when we come to represent these
symbolic descriptions in the computer we will see that the
brackets are part of the syntax of the data-structure called
lists.

Descriptions in example 1 become
2 [on triangle rectanglel
B [inside triangle rectanglel
rule change "on" to "inside"
¢ [on square archl
New description [inside square archl
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geing — More complete descriptions L =

Let us try this on another example:

v | e
2NN

Descriptions A linside trianglel triangle2]

we must distinguish different objects
-

Rule: delete everything?
It would be a good idea to add a list of objects in the figure
to our description, or we will not be able to separate answers 2, 4

and 5. It would also be a good idea to allow several relationships
in a description,

So our general description becomes:
(objects in the figure] [relationships in the figurel
Try example again
A : [trianglel triangle2] [inside trianglel triangle2?]
B : [triangle2]
Rule: remove "inside" object and any relationships it is
involved in
€C : [circle square]l (inside square circlel
New description: [circlel
Which answer figure is this a description of?
Even more Debugging - Similarity descriptions

When we gave the triangle in figure B the same name as one of the

triangles in figure A we were begging the question., Why are these
two triangles matched? Ans. because the similarity between them is
most direct.

But suppose that the answer (:) was not available but [:]
 was, as in




@] o||® A

Then wé might extract the rule: "Remove outside object and blow up
inside object by a factor of 2"

i.e. There are 2 different correspondences between objects in figure
A and figure B. From each correspondence we get a different rule,
yielding a different answer. We must therefore distinguish objects in
figure A from objects in figure B and then make any correspondences
explicit.

Thus the descriptions become:

A : [ trianglel triangle2] [ inside trianglel triangle2]

B : [ triangle3 ]

Similarity 1 : [ Sim triangle2 triangle3 direct] Ffor example 2
Similarity 2 : [ Sim trianglel triangle3 [scale 21] for example 3

means these 2 objects are identical if we apply this transformation to

the first.

Haking;;he Rule Precise

Each of the correspondences between objects in Figure A and

Figure B gives rise to a different rule,

Can we now be more precise in our definition of a rule?

One thing a rule must do is to say which objects in Figure A

correspond to objects in Figure B, and which objects in Figure A

are just removed. For instance in our previous example the

rules must say:

rule 1. [ Remove trianglel ] [ Match triangle2 triangle3 ]

rule 2. [ Remove triangle2 ] [ Match trianglel triangle3 ]
Remove Part

Consider the first rule.

[ Remove trianglel ] really means, remove "trianglel" from the
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list of objects in the description of Figure A and also remove any
relationships it is involved in,

But of course trianglel is not mentioned in the description of
Figure C, so how will we know which object to remove from the
description?

We will have to give sufficient information to identify the object
in Figure C which corresponds to trianglel in Figure A, namely
"square". Why do trianglel and square correspond? i

Ans.  they both bear similar relationships to the other objects
in their figures i.e. they are both "inside" the other object.

So if we say what relationships the object to be removed takes
part in, this should be sufficient information to identify the
correct object in figure C.

Some arbitrary names which will be
associated with trianglel etc., when
we apply the rule

[ Remove x [ inside x y 1]

Match Part

[ Match triangle2 triangle3 ] means replace triangle2 by
triangle3 in the list of objects in the description of Figure A
and replace all relations involving triangle2 with the relations
involving triangle3.

To make this a rule that can be applied to Figure C we will again
have to replace triangle2, triangle3 etc. with some arbitrary name
which can be associated with any object.

We will have to add the relations that triangle? is involved in
so that the appropriate association is made.

We will have to add the relations that triangle3d is involved in
so that we know what relationships the "new" object is to have.
We will also have to say what transformation must be applied to
triangle2 to make it into triangle 3.

So the rule becomes:

[ Match 17 [ inside xy ] nil direct 1
instruction Joint name relations relations transformations
to "match" of both of y in of y in  to be applied

objects Figure A Figure B

Does this rule totally describe changes?



Previous les Revisited
~ The rule in example 3 is now
[ Remove y [ inside x y 1]
[ Match x [ inside x y 1° nil [ scale 2 11
Does the rule totally describe changes?
Let us try to formalize the rule in example 1,
Our descriptions are now:
A ¢ [ trianglel rectanglel 1 [ on trianglel rectanglel ]
B : [ triangle2 rectangle2 ] [ inside triangle2 rectangle2
€ : [ square3 arch ]l [ on square3 arch ]
Correspondences are :
[ Sim trianglel triangle2 direct]
[ Sim rectanglel rectangle? direct ]
the rile is :

[ Match x [ on kx y 1] inside x y 1 direct ’

[Matchy [ onxy] inside x y 1 direct ]

Debugging Rule - Add Part
Let us try this in another example.

Example 4

! 2 - x 3 4 5

o (@] ({[El |o

We see that as well as Remove rules we need Addition rules.

[ Add object [ relations it is in involved in in Figure B 1]
An English Recipe

Are we now in a position to give a precise recipe for doing geometric
analogy problems? Consider the task of finding the rule given the
symbolic descriptions of figures A and B and similarities between
objects in them.
i.e, given:
a description of figure A in the form

- [ objects in figure A 1 [ relationships between objects in
: figure A 1

a degcription of figure B in the form

[ objects in figure B 1 [ relationships between objects in
figure B ]

and various similarities in the form

‘L 8im objA objB transformation ],
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't a symbolic description of a rule whi
gure B.

* Suppose that there is at most one similarit
‘object in Figures A and B,

ch truanatgp,;ﬁgygi A into

¥ description for each

If not then as in examples 2 and 3
we can form a different rule for each legal combination of

similarity descriptions (we might want to make the "most likely"

rule first and see if this produces one of the alternative answers) .

We can now describe how to make the rule desecriptio
Each similarity description, e.g.,

.

[ 8im objaA objB  transformation ]

is used in turn to form a "Match" description.

Let objA-relns be those relationshi

Ps in the description of figure A
which involve objA.

Similarly for objB-relns. Then the Match
description formed is '

[ Match . objA objA-relns objB-relns  transformation ]

Next we generate a Previously unused, arbitrary
use it to replace objA and objB wherever they p
We then delete x from the lists of ob
figures A and B,

name, say x, and
reviously appeared.
jects in the descriptions of

When this process is finished we look at
the descriptions of figures A and B.
in the description of A we form a
is defined as before the form of t

[ Remove  obja objA-reln ]

the lists of objects in

For each object, objA, left
"Remove" description. If objA-reln
his description is

As before we can replace objA wherever it occurs

with some previously
unused arbitrary name, say y.

Similarly for each object, objB, left in the description of ‘figure B

we form an "Adq" description of the form
[ Add  objB objB-reln ]

and replace objB with, say, z throughout.

Finally, we put the "Matches", "Removes" and "Adds"
the rule,
Exercise 1.1

~ Try to write an English recipe for the task of applying the rule
|

~ description to the description of figure C,to form

l of the answer figure,

together to form

the description
What are the difficulties?



Eulogy on Computers

We have made instructions more and more precise — how do we know
when to stop? Ans. when we can express instructions in form of
a computer program that works.
How close are we to that?
Can we represent description of figures and rules in computer?
Ans. Yes, using list data-structures, We will see how in
programming lectures.
Can we automatically form descriptions of figures from, say, input
from a T.V. camera?
Ans. Yes - this problem will be addressed in the lectures on visual
perception. The impatient can read the recommended paper by
Evans (see below)
Can we write a computer program which can carry out the English
recipe described in the last section? 1i.e. form the descriptions
of the rule given the descriptions of the figures.
Ans. Yes - using simple list manipulation programs - breaking
down - copying and building up lists.
Can we automatically apply rules to description of figures?
Ans. Yes - but rather harder list manipulation involving pattern
matching.

Recommended Reading

T.G.Evans "A Heuristic Program to solve Geometric Analogy
Problems". Spring J.S.C.C., April 1964.
These lectures were based on Evans' work but are not an exact
deseription of it.
also sectiom 1.1 of
Minsky, M. and Papert,S. "Artificial Intelligence Progress
Report". AI Memo No. 252, MIT. January 1972.
Exercises
1.2,




1.4,

(a) Repeat 2(a), (b) and* (¢c) with the above figure,
(b) Suppose figure C had been , D.

TO

What goes wrong when we try to apply the description of the rule to
the description of D? How might we amend the rule description so
that it applies to the description of D and produces a description
of E? : E

oT

|!|

4

[Discussion point - Does the new kind of rule description create
problems for the rule-finding and rule-applying recipes?]

Discuss briefly the statement
"Since a computer program can now do analogy problems it makes
no sense to use them on human intelligence tests."

Design a geometric analogy problem which the recipes we have been
building could not cope with. Explain why they could not cope.
If possible suggest ways of amending the recipes to deal with the
new situation.
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4th October, 1975,
AB/3.

THE MISSIONARIES AND CANNIBALS PROBLEM

(The Problem)

Three missionaries and three cannibals seek to cross a river from

the left bank to the right bank. A boat is available which will hold

two people and which can be navigated by any combination of missionaries
and cannibals involving one or two people. . If the missionaries on either
bank of the river are outnumbered at any time by cannibals, the cannibals
will indulge in their anthropophagic tendencies and do away with the
missionaries. When the boat is moored at a bank, it is counted as part
of the bank for these purposes.

Find the simplest schedule of crossings that will permit all the

missionaries and cannibals to cross the river safely.
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MISSIONARIES AND CANNIBALS PROBLEM
—_— e el

(The Approach)

Introduction ‘
Consider M and C problem presented in handout.
Do it yourself and note the following points:
1. More precise statement of problem in terms of initial and
goal states and legal moves.
2. Description of States e.g.

3. Descriptions of Moves e.g. move a missionary and a
cannibal from left to right.

/1
/yﬁ

4. Search Tree, e.g.

MM M
Y ¢ ¢ BOAT / .
\
5. Solution as path of tree and/or sequence of moves.
6. Find solution by exploring tree.
7. "Depth first search” of real missionary and cannibal.

8. Advantages of planning in advance.
Precise Recipe

Can we design a "precise recipe" for finding a solution to this
problem? In order to guarantee the precision of our recipe let us aim
at making it a computer program from the start. Let us weaken the task
initially, to that of writing a computer program that will merely check
our solution, and then develop it into a program which finds the solution
inself. On the way we will introduce numerous ideas about programming

and problem solving.



- mtural to represent thn uta«tu aml tha ub;ects
Th be moved as static structures, for instance lists, and represent

i v

the move-maker as a procedure to manipulate these lists.

MM M
ce BOAT / c a8

a list called leftbank = [M M C C BOATI]
a list called rightbank = [M C]

e.g. States represent

Moves. represent "move a missionary and a cannibal from left to right" in
two parts.
Part 1 as a list of things to be moves, i.e. [M C BOAT]called
the "movelist".
Part 2 as a program to transfer these things from one bank to
the other, called the Move-left-to-right procedure.
e.g. To Move-left-to-right the movelist
Make new leftbank, old leftbank without the movelist
Make new rightbank, old rightbank with the movelist.
end,
(Note the boat is moved automatically by including it in movelist.)
Solution Checker

If we could turn our English version of the move-left—to-right procedure
into a computer program, together with a move-right-to-left procedure, and
if we could make leftbank and rightbank take their initial values then we
could use the computer to check potential solutions

i.e. we need procedure

To Start-Missionary-and-Cannibal

Make leftbank be [M M M C C C BOAT]

Make rightbank be the empty list

end.
In order to be able to do these things, we are going to learn something
about programming which is the subject of the next lecture.
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The Missionaries and Cannibals Problem

(Building the program)

A Solution Checking Program
Armed with our knowledge of programming we can now try to make our

recipe for a solution checker more precise.

Leftbank and Rightbank will be variables. Their values at any one
time will be the current states of the left and right banks. These
variables cannot be local to any of our procedures or their values would
be lost when the procedures were exited. Therefore we will not declare
them as new and they will become global variables, i.e. always accessible.

The procedures translate fairly directly.

l1.8.
TO MOVELTOR  'MOVELIST
10 MAKE 'LEFTBANK WITHOUT :MOVELIST :LEFTBANK
20 MAKE 'RIGHTBANK WITH :MOVELIST :RIGHTBANK
END

similarly
TO MOVERTOL 'MOVELIST
10 MAKE 'RIGHTBANK WITHOUT :MOVELIST :RIGHTBANK
20 MAKE 'LEFTBANK WITH :MOVELIST :LEFTBANK
END
TO STARTMANDC

10 MAKE 'LEFTBANK [M M M C'C C BOAT]
20 MAKE 'RIGHTBANK [ 1]
END
It is necessary to define the subprocedures WITH and WITHOUT. WITH
is relatively easy, but WITHOUT is much harder and needs concepts we have
not yet introduced, so we delay consideration of it until later in the
course.
Let us also define a procedure to tell us the current state.
Otherwise we will find it difficult to remember how we are doing.

t TO PRINTSTATE

10 PRINTLEFTBANK
Wb 20 PRINTRIGHTBANK
- - END




TO PRINTLEFTBANK
10 TYPE 'LEFTBANK
20 TYPE SPACE

30 TYPE 'IS

40 TYPE SPACE

50 TYPE :LEFTBANK
60 TYPE NL

TO PRINTRIGHTBANK

10 TYPE 'RIGHTRANK

20 TYPE SPACE

30 TYPE 'IS

40 TYPE SPACE

50 TYPE :RIGHTBANK

60 TYPE NL

END
Exercises
2.1 PRINTLEFTBANK and PRINTRIGHTBANK are very similar. Can you write
a procedure with one input which can do the work of both?
2.2 These procedures are provided on the library MANDC1 (Do LIB “MANDCL).
Try solving the M & C problem, at the terminal, using them.
Solution Checking

Using the procedures introduced, we can try solving the problem
"by hand", but using the computer to keep track of where we are, We
use the procedures STARTMANDC, MOVELTOR, MOVERTOL and PRINTSTATE. For
example,
1: STARTMANDC
1:PRINTSTATE

LEFTBANK IS [M M M C C C BOAT]=e— starting position
RIGHTBANK IS [ ]

1:MOVELTOR [M C_BOAT]
1:PRINTSTATE

LEFTBANK IS [M M C C]
RIGHTBANK IS [M C BOATI]

1:MOVERTOL [M BOAT]
1:PRINTSTATE

e



RK.15

LEFTBANK 1S [M M C C M BOAT] dw o Boed
RIGHTBANK IS [C] i3 ,us0b

1:MOVELTOR [M C BOAT] (’/
1:PRINTSTATE

after these moves,Missionary —
LEFTBANK TS [M C M] on rightbank gets eaten \

RIGHTBANK 1S [C M C BOAT] <

=

1: STARTMANDC — start over again
1:MOVELTOR [C C BOATJ\
1:PRINTSTATE try a different first move

LEFTBANK IS [M M M C]
RIGHTBANK IS [C C BOAT]

APPLYMOVE

It seems a bit clumsy to have to specify MOVELTOR or MOVERTOL each
time, and also unnecessary. The computer itself ought to be able to
figure out which way to move next. How?  Suppose, for instance, we are
in this situation:

1:PRINTSTATE

LEFTBANK IS [M C BOAT]
RIGHTBANK IS [M C M C]
which way should we move next? Obviously, since the boat is on the
LEFTBANK, we have to MOVELTOR.
So if we could get the computer to see which bank the boat is on,

then we ought to be able to write a single procedure APPLYMOVE which can
decide to MOVELTOR or MOVERTOL as appropriate.

Wri ting APPLYMOVE

We now try to write the procedure APPLYMOVE. Like MOVELTOR and
MOVERTOL it takes a single input, a list of what is to be moved across
the river. Let us call it MOVELIST, so we can type in

1:TO APPLYMOVE “MOVELIST
- What do we want APPLYMOVE to do? Well, if the BOAT is at LEFTBANK,
d :pmt it to MOVELTOR the MOVELIST and that's all, so we type:
' &:10 IF AMONGO ,BQAT :LEFTBANK THEN MOVELTOR :MOVELIST AND STOP

s g
franese mranadoamas Ea oceesBe
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We need a procedure called AMONGQ whose arguments are an item and a list of
items, which looks to see whether the item appears in the list, If it

does, the procedure returns TRUE; if not, FALSE:

“BOAT [M M C BOAT] + '\

AMONGQ
mele  {—=mn

So we have:
1:PRINT AMONGQ “BOAT [M M C BOAT]
TRUE
1:PRINT AMONGQ ICAT [BOY GIRL CAT DOG]
TRUE
1:PRINT AMONGQ 15 [21 12 212]
FALSE
1:PRINT AMONGQ FIRST [MAN HUMAN CHILD] [CHIMPANZEE MAN ELEPHANT]
TRUE
In programming lectures we will see how to write AMONGQ
Go back to writing APPLYMOVE
&:20 IF AMONGQ “BOAT :RIGHTBANK THEN MOVERTOL :MOVELIST AND STOP
and that's it:
&: END
Now, if we SHOW APPLYMOVE, we have
TO APPLYMOVE " MOVELIST
ld IF AMONGQ ‘BOAT :LEFTBANK THEN MOVELTOR :MOVELIST AND STOP
20 IF AMONGQ “BOAT :RIGHTBANK THEN MOVERTOL :MOVELIST AND STOP
END

That looks O K, so let us try using it in cur instructions to the computer:
1:STARTMANDC
1:PRINTSTATE

LEFTBANK IS [M M M C C C BOAT]
RIGHTBANK IS [ 1

1:APPLYMOVE [C BOAT]
1:PRINTSTATE

LEFTBANK IS [M M M C C]
RIGHTBANK IS [C BOAT]



INK I8 [M M M C C C BOAT]
NK IS [ )

L:APPLYMOVE [C C BOAT]
1:PRINTSTATE

- LEFTBANK IS5 [M M M C]
RIGHTBANK IS [C C BOAT] .
Simple interaction : .
Even with APPLYMOVE we still have to do a lot of unnecessary typingi
Why not write a simple program that knows that we want to STARTMANDG and

then specify a sequence of moves, with a PRINTSTATE to be done after each?

Let's try:
TO MANDC
10 STARTMANDC
20 MAKEMOVES
END

and
TO MAKEMOVES

10 REQUESTAMOVE
20 APPLYMOVE IT
30 MAKEMOVES
END

where we use
TO REQUESTAMOVE
10 FRINISTATE This line reads in a
20 PRINT [TYPE A MOVELIST] movelist and makes a
30 GETLIST t— list out of it
40 IF AMONGQ “BOAT IT THEN RETURN IT  which is then returned
50 PRINT [YOU FORGOT THE BOAT » DUMMY : TRY AGAINI
60 REQUESTAMOVE
END

IT returns the result of line 10
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This makes things much easier. For example:
1:MANDC

LEFTBANK IS [M M M C C C BOAT]
RIGHTBANK IS [ ]

[TYPE A MOVELIST]
DATA:C C BOAT

LEFTBANK IS [M M M C]
RIGHTBANK IS [C C BOATI]

[TYPE A MOVELIST]
DATA:C_BOAT

LEFTBANK IS [M M M C C BOAT]
RIGHTBANK IS [C]

[TYPE A MOVELISTI]
DATA:C C

[YOU FORGOT THE BOAT , DUMMY :TRY AGAIN]

LEFTBANK IS [M M M C C BOATI]
RIGHTBANK IS [C]

[TYPE A MOVELIST)
DATA:C C BOAT

LEFTBANK IS [M M M]
RIGHTBANK IS [C C C BOAT]

Towards an M&C solver

Although so far we have been doing all the problem solving, remember
that our goal is to write a LOGO program that can solve the M&C problem
by itself. We try gradually working towards such a program.

Backup
We have TO MAKEMOVES
10 REQUESTAMOVE
20 APPLYMOVE IT
30 MAKEMOVES
END
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But what happens if we make a mistake? We have to start again
from the beginning. It would be nice to be able to "backup", i.e. to
reverse the last move and try again. We recognise that we are really

searching a tree

&R Initial state
MOVE = [C BOATI] MOVE = [C C BOATI]
LEFTBANK = [M MM C C ]} {LEFTM = [MMMC]
RIGHTBANK = [C BOAT] RIGHTBANK = [C C BOATI]

MOVE = [C BOAT]

{LEFTBANK = [MMM C C BOAT]
RIGHTBANK = [C]

Suppose we decide that we are in a blind alley and we want to

"backup" and try again?

try again

We must remember the previous states!!
TRYMOVES
Change MAKEMOVES so that instead of just applying the move at step
. 120 it also explores all the consequences of applying the move. 1i.e. it
- trys further moves. If these consequences are not to our liking we can

to terminate step 20 and go on with step 30 which tries alternative



l.e. current state
\ '\‘ e
O
\\ "l
N
current move — alternative moves (step 30)
consequences {Step 20)
nsures present context of
TRYMOVES is not sullied
by EXPLOREASTATE.
totally explores consequences
TO TRYMOVES of current move
10 REQUESTAMOVE g
0 Enmnﬂnm .LE?TBANK EIGETBANK IT
30 TRYH(NES
previous state is restored
requests another move
TO EXPLOREASTATE ~LEFTBANK ~RIGHTBANK “MOVELIST
50 APPLYMOVE :MOVELIST
100 TRYMOVES
END
makes move
makes consequent moves
TO MANDC
10 STARTMANDC
—= 20 TRYMOVES
END
REQUESTAMOVE

How do we tell the program we have made a mistake and wish to backup?

One answer, just say "backup" when it asks for our next move, i.e. after
REQUESTAMOVE .



TO REQUESTAMOVE
10 PRINTSTATE
——% 20 PRINT [TYPE A MOVE OR BACKUP]

30 GETLIST

——>= 40 IF EITHER AMONGQ BOAT IT
OR EQUALQ IT [BACKUPI

THEN RESULT IT

50 PRINT [YOU FORGOT THE BOAT , DUMMY 2 TRY AGAIN]

60 REQUESTAMOVE

END
How do we make use of this information when we get it? By altering
TRYMOVES so that it does not continue if it is told to backup.

TO TRYMOVES

10 REQUESTAMOVE

——% 20 IF EQUALQ IT [BACKUP] THEN STOP
ELSE EXPLOREASTATE :LEFTBANK :RIGHTBANK IT

30 TRYMOVES
END

Now try on computer.
1:MANDC

LEFTBANK IS [MMMCC C BDAT]}
. Y .

RIGHTBANK IS [ 1] INITIAL NODE1
[TYPE A MOVE OR BACKUP]
DATA:C C BOAT o ooiodaogn oo CFIRSTMOVE
LEFTBANK IS [M M M C]

-_— -
RIGHTBANK IS [C C BOAT] gives a NEW NODE2
[TYPE A MOVE OR BACKUP]

DATA:C BOAT  wee— SECOND MOVE from there

LEFTBANK IS [M M M C C BOATI
®— gives a NEW NODE3

RIGHTBANK IS [C]

[TYPE A MOVE OR BACKUF]

DATA:M C BOAT web— THIRD MOVE
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LEFTBANK 1S [M M C]

e W } W= gives a state where
RIGHTBANK IS'[C M'C BOAT] S i ey

[TYPE A MOVE OR BACKUP]

DATA:BACKUP  ~wse— 50 BACKUP
LEFTBANK IS (M MM C C BOATI)
RIGHTBANK 1S [C] % . m_mﬁss _

A

[TYPE A MOVE OR BACKUP]
DATA:M BOAT ‘:" and tr]f a &iffﬂrent move

LEFTBANK IS [M M C CI]
RIGHTBANK IS [C M BOAT]

Checking for solution

In exploring a new state we ought at least to notice when we have
solved the problem. This is easily done, by adding a new line (line
80) to EXPLOREASTATE:
TO EXPLOREASTATE #LEFTBANK “RIGHTBANK “MOVELIST
50 APPLYMOVE :MOVELIST
—» 80 IF SUCCEEDEDQ THEN PRINT “SUCCESS AND QUIT
100 TRYMOVES
END
Here we have assumed the existence of a predicate SUCCEEDEDQ which
outputs TRUE when the M&C problem is solved. How could we write such
a predicate? One simple way is to notice that there is somebody on
the "LEFTBANK until the problem is solved, so we could check for that
condition:
TO SUCCEEDEDQ
10 RESULT EMPTYQ :LEFTBANK
END

Checking for cannibalism

In a similar way we can arrange for EXPLOREASTATE to check wheth:
the cannibalism condition is violated. Adding an appropriate co
to EXPLOREASTATE is straightforward:

T AG
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TO EXPLOREASTATE ~LEFTBANK “RICHTBANK ’mVELIST STHS

50 APPLYMOVE :MOVELIST 3 akd3 308

———>= 60 IF MISSIONARIESEATENQ THEN STOP b 31 ovss

_ 80 IF SUCCEEDEDQ THEN PRINT ‘SUCCESS AND QUIT o

3 END ¢ s ¥

But then we have to spell out the predicate HISS'fONARIESE&TENQ. Well
for a start, missionaries get eaten if they get eaten either on the
LEFTBANK or on the RIGHTBANK, so if we invent a subsidiary predicate
MEATENQ that worries only about one bank at a time then we can write
TO MISSIONARIESEATENQ '
10 RESULT EITHER MEATENQ : LEFTBANK OR MEATENQ :RIGHTBANK
END P
So under what conditions do the missionaries on a bank get eaten?
Clearly if there are more cannibals there than missionaries. But this
means that we need to be able to count the number of missionaries (or
cannibals) on a bank. How do we do this? By our favourite trick of
simply supposing a suitable procedure to exist, and then worrying about
how to define it later. -
So let us assume that we have available a procedure NUMBEROF which
takes two drguments, 4n item 'and'd lisf of items, ‘and returns the huvmber
of times the item ocewrs in the list:

/CoW, [HORSE' COW DOG COW SHEET HORSE RABBIT]—¥ P

NUMBEROF is in several ways analogous to AMONGQ, but whereas AMONGQ
y tells whether or not an item occurs at all, NUMBEROF tells how
nl:‘flfmes it occurs:
- 1:PRINT NUMBEROF “COW [HORSE COW DOG COW SHEEP RABBIT)
2
1:PRINT NUMBEROF “M [M C M BOAT]
2
T:PRINT NUMBEROF ‘M [C ¢ C)
0

OW We can write MEATENQ. The condition that there are more
§ than missionaries on some BANK becomes just:
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GRTRQ (NUMBEROF C :BANK) (NUMBEROF M :BANK)
But this can't be quite right, since when the number of missionaries is
zero it doesn't matter how many cannibals there are. In other ﬂom.__:
there have to be some missionaries present if any are to be eaten.
This gives us:

TO MEANTENQ “BANK

10 BOTH GRTRQ (NUMBEROF ~C:BANK) (NUMBEROF “M $BANK)
ANDALSO GRTRQ (NUMBEROF “M !BANK) O

END
Exercise 2.3 Add all the changes made so far to the file MANDCIL.
5 .+ " ' . Try running MANDC, You may find it more helpful to make
line 60 of EXPLOREASTATE print out an informative message, perhaps:
i —=— 60 IF MISSIONARIESEATENQ THEN PRINT [MISSIONARIES EATEN,
5 MOVE REJECTED]
Generating applicable moves
By now the program is doing all the work except for the actual . ' .. T

selection of moves, so the last step is to have it do this as well.
How can it? What basis is there for choosing moves? One way is
to simply let it try all the possible moves in turn. This is perfectly

| reasonable, since there are only five of them. So let us begin by
making sure that some list contains all five of these possible moves:
5 TO STARTMANDC

' 10 MAKE ~LEFTBANK [M M M C C C BOAT]

20 MAKE <RIGHTBANK [ ]

= 40 MAKE POSSIBLEMOVES[LC C BOAT] [C BOAT] [M C BOAT]
[M M BOAT] [M BOAT1]
END

Then in EXPLOREASTATE, we replace the line telling it to TRYMOVES
typed in by us, by a line telling it to TRYALL :POSSIBLEMOVES (see line
100 - below). And how should it TRYALL? Simply by trying one at a
time:.

TO TRYALL “SETOFMOVES

10 IF EMPTYQ :SETOFMOVES THEN STOP

20 EXPLOREASTATE :LEFTBANK :RIGHTBANK FIRST :SETOFMOVES
30 TRYALL BUTFIRST :SETOFMOVES s
END



— % ! oS IBLEMOVES -
——%- 30 PRINT [NO SOLUTION FOUNDI \
END
(line 30 is justified because if the program does try all possible moves
without meeting success, it will indeed have failed.)

There is only one snag left now which is that not all moves are
necessarily applicable to a particular state. For example, if we have
LEFTBANK IS [M C BOAT] then it is impossible to move two cannibals across'
What should we do about this? One possibility would be to modify TRYALL
so that it tries only applicable moves, but it seems simpler to add a
further test to EXPLOREASTATE, but this time before the move:

TO EXPLOREASTATE ‘LEFTBANK “RIGHTBANK ~MOVELIST
—% 40 IF NOT APPLICABLEQ :MOVELIST THEN STOP

50 APPLYMOVE :MOVELIST

60 IF MISSIONARIESEATENQ THEN STOP

80 IF SUCCEEDEDQ THEN PRINT “SUCCESS AND QUIT
—3%= 100 TRYALL :POSSIBLEMOVES

What decides whether a move is applicable? Clearly there must be
at least as many missionaries on the bank as are specified in the move,
and similarly for cannibals:

TO APPLICABLEQ /MOVE
10 BOTH LESSEQUALQ (NUMBER OF “M :MOVE) (NUMBEROF 7 FROMSIDE)
ANDALSO LESSEQUALQ (NUMBEROF 'C :MOVE) (NUMBEROF € FROMSIDE)
END
FROMSIDE is a function which returns the bank which the BOAT will be
leaving from. Could you write it?

Msoping

Try above procedure out acting as devils advocate



:LEFTBANK = [M M M C C C BOAT]
tRIGHTBANK = [ ]

[C C BOATI]

:LEFTBANK = [M M M C]
:RIGHTBANK = [C C BOAT]

[C C BOAT]
{:mrrm-muucccmﬂ .
!
etc. { :RIGHTBANK = [ ]

1/

We are in a loop! .

We could avoid this particular loop by ensuring that we do not im-
mediately reverse a step we have just made. Unfortunately there are

more subtle loops.
State A

(]
[ ]
several moves
in between 3

State A again

Note that, if we have a solution with repeated states then we can
modify it to get a.simpler solution without repeated states., Therefore
a solution with repeated states is not the simplest solution, which is
what is required.

To avoid loops we need to keep track of which states we have seen
before and avoid repeatedly exploring them. How shall we do this?

As always, the appropriate changes to EXPLOREASTATE are easy to make.
We just need to reject a state if we have seen it before (line 70 - .see
below), but if on the other hand it is a genuinely new state then we must
record the fact that we have seen it (line 90):

TO EXPLOREASTATE “LEFTBANK ‘RIGHTBANK “MOVELIST
40 IF NOT APPLICABLEQ :MOVELIST THEN STOP
50 APPLYMOVE :MOVELIST
60 IF MISSTIONARIESEATENQ THEN STOP
— 70 IF SEENSTATEBEFOREQ THEN STOP
~--- - -~ 80 IF SUCCEEDEDQ THEN PRINT ’SUCCESS AND QUIT
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' —S 90 RECORDNEWSTATE
100 TRYALL :POSSIBLEMOVES
END _
How are we to remember which states we have seen before? One way
would be to keep a list of all the LEFTBANKs and RIGHTBANKs we have seen,
and then when we have a possibly new state, check whether we have seen
this particular combination before. But that would be a bit complicated,
and we can simplify it in two ways:
(a) We don't need to record both the LEFTBANKs and the RICHTBANKs,
since given one we know what the other must be.
e.g. if LEFTBANK is [M C BOAT] then we know that the
RIGHTBANK must be [M C M Cl
So it would be sufficient to remember just, say,; the LEFTBANKs.
(b) We still must be careful over what it is about the LEFTBANKs
that we remember. Suppose that we have previously seen a LEFTBANK
of [M C BOAT], and that it is now [C M BOAT] then they are really
the same LEFTBANK even though they are not "equal:
- 1:PRINT EQUALQ [M C BOAT] [C M BOAT]
FALSE
What is really important about the LEFTBANK is the number of
missionaries and cannibals (and boat) there, not the order in which they
appear in the list. This suggests remembering the LEFTBANK as a group
of three numbers:
(number-of-boat-on-leftbank, number-of-missionaries-on
leftbank, number-of-cannibals-on-leftbank).
So that, for example,
[M C BOATI corresponds ta f 340 1
e s
one boat one missionary one cannibal
Let us define a procedure to construct these triples:
TO STATETRIPLE

-
10 << NUMBEROF BOAT :LEFTBANK funny list brackets <£.,.2>>
NUMBEROF “M :LEFTBANK allow elements to be results
NUMBEROF “C  :LEFTBANK >> of procedure calls.
END




So that we have, for example:
1:PRINTSTATE

LEFTBANK IS [M M M]
RIGHTBANK IS [C C C BOATI]

—-— o -

L:PRINT STAFETRIPLE
Lo '3 o3

If we have a list .STATESEEN which holésal(lt:bg state triples we
have seen, it is easy to write our procedures to examine or update it:
TO SEENSTATEBEFOREQ
10 RESULT AMONGQ STATETRIPLE :SMSEEH
END

--Il‘:' e BL

TO RECORDNEWSTATE

10 MAKE STATESEEN FIRSTPUT STATETRIPLE :STATESEEN
END

And we should remember to start STATESEEN off with the initial LEFTBANK
TO STARTMANDC
10 MAKE “LEFTBANK [M M M C C C BOAT]
20 MAKE “RIGHTBANK [ 1
——— 30 MAKE “STATESEEN [ [ 1 3 3 1.]
40 MAKE “POSSIBLEMOVES [[C C BOAT] [C BOAT] [M C BOAT]
ENBIEH M BPA‘I‘] [M BOATI] -
Exercise 2.4 Make these additions and try using them. As before, you will
find it more helpful if line 70 of EXPLOREASTATE prints out an appropri-
ate message.

Try it You can get a demonstration of this way of solving the problem
from LIB “MANDC2. The procedure used to print out what is happening

is called PEXPLOREASTATE. Have a look at it, and compare it with the
version of EXPLOREASTATE given above.

Exercises 2.5 Edit STARTMANDC and change the order of POSSIBLEMOVES.
Describe the effect this has.

© 2.6 The représéntation of states by LEFTBANK and le":
is rédundant. iModify 'the™ & C: progﬁfan‘ 'so' that ‘only LEFTEANK ig e
explicitly représented: 4o i it

* 2.7 The "STATETRIPLES" wé invented to record states &_
reached,. suggest an alternative way of representing states. :
M & C program so that it uses this representation.
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MISSIONARIES AND CANNIBALS PROBLEM

(Search Techniques)

Analysis of Search Strategy

We can represent all possible sequences of moves in the missionaries and

cannibals problem by a tree

initial state

applicable moves
arranged in order, with

first choice on left.

-

looping
detected 2 Search Tree

]

[l
¢
L)
.

cannibalis*
occurs "'
W

[}

’

’
i
+

We can regard the program as growing some of this tree as it rums, and
thus exploring it. 1In what order does it grow the tree? What was our

search strategy?



Simulation of Search

This is called depth first search. That is we keep going down,taking

the left-most branch at every choice point,until we have to backup.
Then we go back one place and take the next choice.
Simplest Solutions

Unfortunately this does not necessarily give us the simplest solution.

simplest
solution
first
solution
found
' o ’ goal state
i rll‘
{ B
Non-simplest solution
found

goal state

We may find a complicated solution on the left-hand side, before a simple
one on the right-hand side. We could search the whole tree then choose
the simplest solution from among all the solutions found. Alternatively

we could explore all solutions in parallel so that the first found was
bound to be the simplest.



Breadth First Search

Suppose that simplest means the smallest number of moves, then we can
advance each branch of the tree one step, then go back and do it again.

This is called breadth first search. If our definition of simplest

was a bit more subtle, the search would not be so easy, but we could
still do basically the same thing.

Exercise 2.8

How would you implement the M & C program, so that it did a breadth first
search?

Guidance

The search tree for the M & C problem is fairly small, and we are able
to find a solution by a brute force search (straight down, keep to the
left). Many search trees in AI problems are very large (e.g. draughts)
‘and programs to search them need to be guided, if they are not to become
bogged down. Typically one would want to choose the most promising
looking move, at any choice point, instead of choosing the next one on
some fixed list. One might want to temporarily stop exploring some
particular state and move on to another, while reserving the right to

come back,



“intelliﬁgnt” search

stra teEz

Graph Traverser

Many AI programs can be regarded as involving some search through a
search tree. These trees are typically large (especially if the
problem domain is not well understood) and the search through one

needs to be guided if the program is not to become bogged down.
Attempts have been made to write general purpose tree searching
programs which only need to be fed particular details about the state
descriptions and legal moves. Having such a program available makes
it easier to formalise problems like the missionaries and cannibals.
This is important when it comes to designing a program to solve
problems from their verbal statement. One such general search program

is the Graph Traverser of Doran and Michie (see recommended reading).

Their program searches graphs instead of trees. The difference is
slight, 1In a tree if we have two identical states on different branches
we_.record them separately, in a graph we use one hode to record them both.
When we say we are searching a graph, rather than a tree, we imply that

the test for looping is built-in to our program.

A Tree A Graph

e

identical _a} the state
states identified




Evaluation Functions

The Graph Traverser provides a general mechanism for gulding search.

The user is expected to provide a procedure which takes a state and
calculates a numerical score which measures how close the present state
is to the goal state. Such a procedure is called a Heuristic Evaluation
Function. The graph traverser always chooses to explore next the
unexplored state with the highest score.

Exercise 2.9

Write an evaluation function for the missionaries and cannibals problem.
Exercise ' 2.10

The."Eight-Puzzle" is played on the 3 x '3 tray illustrated below:

1 2 3
DZE
6 7 8

Mounted in the tray are eight 1 x 1 square pieces, which are free to slide
left, right, up or down into an empty square. The standard position is
illustrated in which the centre square is empty and the numbers are arranged
in numerical order. The puzzle is played by initializing the pieces in
some other order and then trying to get them back into the standard position.
(a) Explain how a course of play can be represented as a search
through a tree or graph.
(b)  How'would this representation help you to design a computer
program to solve eight-puzzle problems?
(c)  Suppose you were writing such a program. How could you
represent in LOGO: states of the tray and moves. Explain
in English (or LOGO) how you would apply moves to states to
-produce new states.

Recommended Reading

Doran, J. 'An Approach to Problem Solving' Machine Intelligence 1,

Edinburgh University Press, pp. 105-23.
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& C was a toy preoblem. For instance the search tree
2 did not need to exercise much intelligence in
(once we had arrived at the formal representation). We
attention to a problem area, where it is perhaps easier to
present the problem as searching a tree, but where the search
idable problems.
- problem area is draughts.
i " Can we give a precise recipe for playing a good game of draughts?
- Complete Analysis’(aid the search tree) .
One way to guarantee to play a good game would be to analyse com-
pletely the game i.e. explore once and for all all the possible games.
Maybe this is possible using modern high speed computers? Let us draw

s

a picture of such a complete analysis

initial board positien

all first players moves

all second players
responses

lose

Search Tree
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It has been estimated that this tree contains 1'3!‘!"3I nodes. If we

make the (very optimistic) assumption that we can consider 3 nodes per

millimicrosecond them it would take 1021 centuries to explore the whole

tree. Clearly this is out of the question! (Regardless of how we
search the tree, depth first, breadth first, etc.)
Look Ahead

yol
An alternative to searching the whole tree is to search some way
ahead, whenever we have a choice, to see which is locally the best choice

terminal a8 :
positions 4 ! RASYE RO 081
> &*ﬂ],ﬂb o3
}" mu bits
rest of tree aldiptog &

In order to analyse completely the loqhilﬁhiﬁ'c:ae we must be able
to assign some value to the terminal nodes (previously they were all wins,
draws or losses).

To fix thinking let us decide to award a numerical score to each
terminal position
a win for lst player gets the biggest positive number

a lose for lst player gets the biggest negative number
a draw gets zero

other scores will be in between as we decide.
Mini-Maxing

Having fixed scores of terminal positions how do we analyse board?
(Assume lst player to choose throughout.)

clearly chooses

this one A #e— 1lst player moves

+10 =2 =8

+4

|
f
i
I
i
[
!
[
[
I
|
[
[
I
[
[
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Is A best move?

No! because 2nd player can be assumed to take -2 branch to maximise his
chances, so B for instance, would be better. In fact C is best because
2nd player can take +3 branch at best.

Can we fermalise this

best choice

We can carry out the process to any depth., This technique is called
mini-maxing.

Chaasing the Score

How do we decide what score to give a board position?

Could we decide in advance on a score for each individual position?
No! Too many mli:!‘40 .

We must use some high level classification of board positions e.g.
look for features.

What ie a feature?
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Who has the most pieces?

Is anybody in a position to fork?

E anybody in a position to gain a king?
Who controls centre?

We can look for features and award points for each e.g. so many for
each potential king, etc.
Then add up all points to get total score for board,Advantages for
lst player scored positive, advantages for 2nd player scored negative,
How do we decide relative values between different features?
Usually by experimentation and practice. Therefore it is useful to be
able to adjust relative values easily.
Ans. Score each feature separately, without regard to relative valuce
then weight each score before adding them together

i.e. Total Score = iﬁ x s, + T g « M +wn x 8

weight nghature

8core

Look Ahead
How do we decide how far ahead to look?
Factors (a) limited capacity of uachiné; (Number of nodes
increases exponentially with depth means that we

can typically only search 3-4 moves deep. Phenomena
called Combinatorial Explosion.)

(b) Principle of hot pursuit. i.e. we want to pursue
longer those branches that are not stable, For
instance if the next move is a jump, keep looking
unless we are nearly exceeding the capacity of machine.

{e) Close down those branches that cannot be any good

etc. black fork

B B N O O O T S S D S aEw O maw e e s S e



e.g. A

10 . cannot be more than 5

can be ignored
because score of
C cannot now beat
score of B.

This refinement is called X-B search.

Exercise 3.1 Comsider the following look-azhead tree, where the scores
for the terminal positions have been filled in. Using the mini-max

procedure determine which move the first player should make.

*5 ~17 +7 42 490 +30 +10 =3 =2 =3 +100 +70 +3 45 +2  +7
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Samuel's checkers (American for draughts) program, which is based

on these principles, beats all but the very best players. Chees playing
programs have also been written along the same lines, Here the situation
is mot so healthy. They can play only as well as the best amateurs.

There is no hope of a radical improvement of their performance. Their

—

play can only be improved by searching deeper or increasing the effort

involved in calculating the score of a position. Both of these involve

an increase in the time spent choosing moves, and the existing programs I

already use all the time allocated to them under tournament rules.
The whole area of chess playing programs is currently undergoing a

revolution. New techniques are being explored. For instance, using

high level descriptions of board positions to carry out a strategic

search,before unpacking this into a more detailed, deep, but narrow

search, For a good account of the problems of the old appreach and

some of the new techniques, see the paper by Berliner.

Recommendéd Re:ading

Samuel, A.L. 'Some Studies in Machine Learning using the Game of Checkers'
in Computers and Thought (eds. Feigenbaum,F.A. and Feldman, J.)
McGraw-Hill, 1963.

If this area particularly interests you, see ;

Berliner, H. 'Some Necessary Conditions of a ﬁhstsr Chess Program'
Proceedings of the 3rd IJCAI, p.77-85, Stanford, 1973,
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The General Problem Solver

wi;e have constructed or discussed computational models for

ar tasks (I.Q. tests, Miss'& Canns' problem and draughts), but

have the ability to solve problems in a wide variety of domains,

; lﬂ areas they have not encountered before. What does this

%wlm solving ability consist of? Can we construct a program
ﬂi.!hh this capability? In the late fifties - early sixties a lot of
lni:vy was devoted to this guestion, the most famous program being the
'ﬁneral Problem Solver" (or G.P.S. for short) of Newell, Simon & Shaw.

§ el

Naturally it is necessary to explain a particular problem to G.P.S.
ﬁ.ﬁ li:'s -done by giiring descriptions of the initial and goal states of
the world (called objects) and operators to transform these objects.
Thus just as in the Miss' and Canns' problem , G.P.S. has to search for
a sequence of operators which transform the initial object into the final
object. To help it with this search G.P.S. must also be given a pro-
cedure for finding differences between objects and a way of relating
'l:haae differences to operators relevant to reducing such differences.

4 '!.'he central contribution of G.P.S. is a general search technique called

means-ends analysis.
Means-End Analysis

To see what this is consider the problem of getting from my home
in Edinburgh to Trafalgar Square, London. G.P.5. would go through a
process of reasoning like the following.

"My Mor end is to transform "me at home" into "me in Trafalgar
Square". The first task is to compare these two states and find the
difference. I find the difference to be one of location. The means
I have of reducing differences of location are operators like "walk"
or "travel by train". Some cperators, like "walk", can be rejected as
infeasible, but "travel by train" is feasible, so my next task is to
- apply this operator to the initial state, "me at home". Unfortunately
the operator will not apply immediately because the conditions are not
= zi.ght. - I am not at the station. So I set up a new subgoal to trans-
: 1 "me at home" into "me at the station"., Again the difference is
location and again I find the "travel" operators. I can reject
" as infeasible (I am lazy) and "go by tzain" as a potentj.ai loop



and select "go by taxi". This cannot be applied because the conditions

are wrong - the taxi driver does not know I need him. The difference
is one of information, so I lock for an operator which can reduce dif-
ferences of information and find the communication operators like "use
the telephone” .i......uas cases”

This kind of analysis can be carried on to any required depth and
will eventually produce a plan consisting of a sequence of operators.
Methods

Means-ends analysis is embodied in GPS aa.a series of procedures
called methods. These are usually explained by the following flowcharts.
Method 1
Goal: Transform object A into cbject B.

Match A to B Subgoal:
;ifgzzgnca D = > permeancte
}Lnone 1, fail
Success Fail
Method 2

Goal: Reduce difference D between object A and object B.

Search for operator Q : Test if feasible ves Subgoal: .
relevant to reducing D (preliminary) ————3 Apply Q to v—éisuccess

A producing|
J' none no A'
Fail try for anothexr o&eratnr ; .
Method 3

Goal: Apply operator Q to object A.

Match condition Subgeoal: Subgoal :
iof Q to A to find D .| Reduce D A' Apply Q to A’ A"
i difference D 5 > HEuccess

lnone ‘Lfail \L fail
.4 Fall Fail

U]
produce result ___E__;Success

G.P.S. can achieve goals of three different types:
i; Transforming one object into ancther,
2, Reducing a difference.

Is Applying an operator.
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- For each type of goal there is a method. These methods generate subgoals
‘and call the appropriate methods to achisve these subgoals. Thus each

method can call itself and the others in a highly recursive way.

Exercise 4.1 Using the above flowcharts, trace the behaviour of G.P.S.

on the Trafalgar Square example.

Defining the Problem

How can we describe a problem to G.P.S.? We must choose a way of
describing states of the world. A good way might be lists of symbolic
descriptions like:

[[At me homel [Near me telephone! [Has me £29]]

We must also tell it what operators are available, what preconditions
they have and how to apply them to one object to produce another. For
instance, we could describe the operator "go by train" as £ L

"provided the object contains [At me stationll

form a new object by deleting [At me stationll.

and adding [At me station2]." (in a suitable

procedural form of course)

Unfortunately this is not all, we must also give G.P.S. a procedure for
picking the most significant differences between cbjects, e.g. location
is the most significant difference between the initial state above and

[[At me Trafalgar Squarel], Then it must be able to use these differences
to extract relevant operators. This is usually done by feeding G.P.S. a

difference, operator table. {

e.g.
walk train taxi phone table write
Hifferenc
location X b X
information X X X

A cross in a square indicates that the operator in this column is useful for
reducing the difference in this row. These differences must also be ordered
by the difficulty of reducing them. The most difficult is always selected
as the most significant between objects and there is a check to see that we




never try to reduce a hard difference as a subgoal of an easier one.
G.P.S. also requires us to supply a procedure for testing the
feasibility of an operator in some particular situation.

we might reject "walk" if the differences in location is more than a

mile,

is pressing.
ad-hoc, unsystematized knowledge which supplements the distance, operator
If we succeeded in systematizing this knowledge we might prefer

table.

or reject "write a letter", if the demand for information exchange
This feasibility test is a hack enabling us to include

to include it in the table

e.g.
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For instance,

location difference

in wiles taxi train plane
5 e
1 =10 X
L0 - 100 X
> 100 X

This is rather a lot of information to have to give for a particular
problem and the question arizes as to whether G.P.S. succeeds as a general

problem solver.

The Search

When G.P.S. is set loose on a problem it gets involved in a compli-
It is useful to

We will return to this later..

cated series of recursive calls to the three methods.

have a neat way of describing the search behaviour.

way here.

BAnother description for the G.P.S. search strategy is problem re-
duction.
goal for a series of simpler subgoals and then exchanging these for even

simpler subgoals, until all the subgoals are trivial.

searches can always be represented as And-Or Search Trees.
like ordinary search trees except that the subnodes of a particular node
can be grouped into And Bundles.

e.g.

We present such a

Problem reduction is the strategy of exchanging your current

Problem reduction

These are
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The three B's are one And Bundle. The twc C's are another. The
interpretation is that subgoals Bl, B2 and B3 together establish A, and
that MI €l and C2 together establish A,

The search for a solution to the "Trafalgar Square" example can be

illustrated by the following And-Or Ssarch Tree. This tree is searched
in a depth first manner.

Transform
"me at home" into
"me at Trafalgar Square"

//O\.- method 1
Reduce Difference Transform
of "location" "me at King's Cross"

into "me at T.S."
~—
M
method 2 e
— f
Apply Operator
"go by train to
"me at home"
* nethod 3
Transform Apply Operator
"me at home" into "go by train" to
"me at station" "me at station"
[ =~
- o st method 1
“h..
e T

Reduce Difference
of "location"

*Exercise 4.2 Explain how the look-ahead tree used in draughts can be
regarded as a type of And-Or Search Tree,
Psychological Validity

G.P.S. was claimed to be not only a general problem solver, but also
to have psychological validity, i.e., it was supposed to solve problems

in a similar way to humans. How could we test this claim? First we
have to choose a level to make the comparison. For instance, at a very

basic level, that of the excitation of neurcnes and currents passing
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transistors the human and the computer are ghgioqs].g behaving
&ﬁgﬁnﬂy. On the other hand at the gross 1&@15@}%&;@“ they both
‘solved the problem the similarity can be trivial. . Newell & Cols con-
tribution was to define an intermediate level of cumpa.rigén, J:}_}_?t of the
programs running in each. Even this is not quite right. It would
clearly be silly to claim that people are programmed in LOGO oxaqg other
computer language. What Newell does claim is that people are programmed
in some language and that the G.P.S. program is similar to the human
program but in a different language. Just as a programmer will often
claim that some ALGOL program, say, is similar to some FORTRAN program.
This level of comparison is called the Information Processing Level.

This claim is tested by comparing the trace of both programs. The
G.P.S. trace is easy to obtain, by getting the program to print cut
messages as it proceeds. The human trace is obtained by getting the
subject to "think (and write) aloud" while he is doing the problem.

The result is tape recorded and is called a protocol. Newell et al
claim that this protocol is not introspection but behaviour.

However, the traces still cannot be compared directly, since the
computer trace is not in English. Instead the human is assumed to be
searching the same And-Or Tree as the computer and his protocol is ex-
amined for evidence as to how he searched this tree. The computer and
the human are said to be behaving similarly if they searched the tree
in the same way. -

How successful was this attempt at psychological simulation? 1In
the example in the recommended reading the correlation was fairly good.
There are, however, some aspects of behaviour which G.P.S. finds dif-
ficult to simulate
5 B -

(a) The program makes no distinction between searches conducted
in memory and searches conducted in the world. e.g. between remember-
ing a telephone number or looking it up in the directory.

(b) The program does not handle meta-remarks (i.e. reflections
about ‘the task) like "this is difficult" or "I am lost" ete.

(e) Subjects sometimes handle similar goals in parallel, which
the program could not do. e.g. The subject might consider, andreject,
several modes of transport (aircraft, ship, hovercraft), at a stroke,
whereas the program would have to consider each possibility individually.

(d) Subjects sometimes indulge in a more complex kind of back-up
than the depth-first search which G.P.S. is capable of. e.g. When plan-
ning how to get from King's Cross to Trafalgar Square, realizing you will

S S I S S .
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mley after all.
Ine 1 ok

_gﬁ!géueians ;

As a general problem sclver, G.P.S. was not an ungualified success.

enough money for a taxi unless you decide to walk f:_;m home to

-It‘s main shortcoming was the tremendous amount of information that had
to be input about each particular problem and the small contribution
made by G.P.S. Few people in AI now believe that it is possible to
construct a general problem solver, which does make a large contribution,
and the effort is now directed to building systems with expertise in
areas of commonsense reasoning (like visual perception) . The role of
G.P.S. is now filled by new, high-level, programming languages (like
CONNIVER and PLANNER), which we will hear more about later. Judged as
a programming language G.P.S.'s shortcoming is that information about
particular problems has to be fed in in a highly stylized, awkward way.
Some of the applications of G.P.S. seem rather forced. Newell et al
have now dropped G.P.S. in favour of a type of programming language
called Production Systems, which we will discuss in the lectures on
learning. The new high-level programming languages are designed to
make the programming of task specific information easier.

Despite it's shortcomings, G.P.S. has been highly influential in
AI. Many of the ideas embodied in it have been adopted in later pro-
grams. Sometimes to better effect. For instance, compare G.P.S.
differences with the Geometric Analogy problem rules, which really
describe differences between figure descriptions.
Exercises 4.3 Suppose you were trying to get G.P.S. to solve the
missionaries and cannibals problem. What would you choose as the
objects, operators and differences?

*4.4 We can express each of the G.P.S. methods as a LOGO
procedure. For instance, method 1, for transforming one object into
another, can be written:

TO TRANSFORM A “B

1o NEW [D Al]

20 MAKE “D FINDDIFF :A :B

30 IF EQ :D “NONE THEN RESULT “SUCCESS

40 MAKE 'Al REDUCEDIFF :D :A

50 IF EQ :Al /FAIL THEN RESULT ’FAIL

60 TRANSFORM :Al :B

END
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Express the other two methods as LOGO procedures (Hint: Method 2
is more difficult because of the loop. Make a list of all relevant
operators then work down this). Each of the methods call sub-proced-
ures, like FINDDIFF. Write these using CALLUSER, then run your program
on the "Trafalgar Square": example.

*4.5 There is a deep bug in the G.P.S. flowcharts associated
with back-up. What is it?

Recommended Reading
Newell,A, and Simon, H.A. 'G.P.S., A program that simulates human
thought' in Computers and Thought (eds. Feigenbaum,E.A. and Feldman,J.)
pp.279-93, 1963. McGraw-Hill.

If you are particularly interested in the computer simulation of
human behaviour (i.e. in information processing models) then another

good reference is:

Newell, A., Simon, H.A. and Shaw,J.C. 'Elements of a Theory of
Human Problem Solving' in Readings in the Psychology of Cognition
(eds. Anderson and Austel) - available in the library.
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The Problem

Suppose we had a robot janitor, locking after a suite of rooms.
We want to give him a series of tasks to perform each day, then leave
him to it. We do not want to have to give him a separate program for
every conceivable task. Rather we would like to give him a few basic
programs (called operators), and have him put them together into a big
program to perform whatever task we give him. The task will usually
be explained, by giving a description ‘of the .desired state of the rooms.

Example - Collecting Boxes

Suppose the current state of one of the rooms is

Initial Room A
| |
| 1] ] 2
i /\- robot _ !
i \ 3 1 f
—_—, ; ! )

We might ask that all the boxes be put in the same place, i.e.:

Final Room A




- he can push something from one place to another

He might devise the plan:

I go to box 2

o push it to box 1

d..  wo to box 3

4, push it to box 1

It will be no use him just performing various operations at random,
until he chances upon some combination that works. This would take
far too long, and might causs irrevocable harm to the rooms. Rather
he must form a plan. To form a plan he must perform a G.P.S. like
means/ends analysis i.e. Find the difference between his current
description of the rooms, and the description of the desired state,
then pick an operator relevant to reducing that difference. This
implies that he must know something about his basic operators, for
instance, under what conditions they can be run, and what their effects
are.

Automatic Programming

This problem is analogous to the problem of getting computers to
write their own procedures. i.e. instead of writing a procedure to do
a task, we would like to be able to specify the task, and have a computer
brogram put together its existing procedures into a procedure to achieve
this task. This is called Automatic Programming. The operators here
will be the procedures that have already been written. The task will

be described by making statements about the values various variables,
should have, before and after the procedure is run.
Example - Reversing a List

Given the procedures EMPTYQ, NOT, FIRST, BUTFIRST and FIRSTPUT,

write a procedure to reverse a list,
We might explain the task by giving some example input/output pairs
e.g. input is [A B C DI
output is [D C B al
or by giving a mathematical definition of REVERSE
e.g. REVERSE of [] is []
otherwise
REVERSE of :L1ST is LASTPUT (FIRST :LIST)@EVERSE BUTFIRST : LIST)




10 NEW 'ANS @@

20 MAKE 'aNs []1

30 WHILE NOT EMPTYQ :LIST
THEN FPUT F :LIST :ANS
AND MAKE 'LIST BF :LIST

40 RESULT :ANS

END

Comparison

Work is going on in both domains, robot planning and automatic pro-

WIS BT prRgUC

gramming and there has been useful interaction between the fields. We
will be mainly concerned with the former in these lectures. The work
on robot planning has tended to concentrate on searching for, so called,
simple plans. i.e. a sequence of operators, as in the collecting boxes
example. On the other hand, people in automatic programming have been
unableto ignore the need for conditionals, loops and recursion, as in our
list reversing example, Consequently they have made less progress (this
work is still in its infancy), but results in this domain should have
repercussions in robot planning, since plans for everyday tasks need
conditionals, loops and recursion too, as the following example shows.
Example - Cigarette Lighting

To light-a-cigarette

Put cigarette in your mouth

get a flame

hold flame against end of cigarette
inhale until cigarette lights

end

To get-a-flame

If you have matches then

Take a match out of box

Strike match against box repeatedly, until it lights
else ask someone else for a light

end



Each of the lines with "until" in them, imply repeating some action until

some predicate is true i.e. looping. Compare the use of WHILE in the
list reversing example p RK.50.

Describing the task

How can we describe the task of "collecting three boxes" to a computer
program? Answer - by giving a symbolic description of the initial state
of the room, and the final goal.

e.g.

Initial State [AT ROBOT Al [AT BOX1 Bl [AT BOX2 C]

[AT BOX3 DI
Final Goal [aT Boxl ?x] [AT BOX2 ?X] [AT BOX3 ?XI]

A, B, C and D are constants representing places. ?X is a variable which
may be assigned a place as its value during the construction of the plan.
In what follows it will not always be possible to say, in advance, which
variables are to be assigned values (denoted 'X) and which are to be
replaced by their values (denoted :X). We will therefore drop the
prefixes ' and :, and write ?X instead. When the inference system
meets ?X, it will first check to see whether X has been assigned a value.
If X has a value, ?X will mean :X, else, if X has no value, ?X will mean
b This facility is not implemented in LOGO at present. (Feb. 1976)

When we search for a plan we will need to represent intermediate
states. These can also be represented as a set of facts. Note that
a fact, like [AT ROBOT Al, may be true at one time and false at another,
We can deal with this in at least two ways:

(a) We can give esach fact an extra argument, stating at what time

or in what situvation, the fact is true

e.g.
i E [AT ROBOT A 1]
[AT ROBOT C 2]
( [AT ROBOT A INITIALLY]
situas (.1 ropor ¢ (Do (GO A €] INTTIALLY]]
tion

{called the situation calculus)



= of databases each one labelled with a

1ly (logically) the same, but (b} is more sug-
' designing an efficient computer program to do
~adopt it here.

we will really need when we are searching for a plan

of databases, but a search tree of databases, where
erators

.
[ 00 160 4 81 13 L]T_;[
67 for L £ dol (
j i
[DO [PUSH BOX1 B €1 [DO [GO A BJ I ] |¢———intermediate state

oo e o

Final'State

Clearly simple times will not do to label these states
use situations.

(why?), we must

resenti the ators

How can we describe the operators to the computer program? It is
‘easy to represent the two operators "robot go from x to y" and "
from x to y" as [GO ?X ?Y] and [PUSH 72 2X ¥l
sensible plans we must also know.

push z

but in order to construct

(a) when the operators can be applied
(b) what effect they have on databases

We deal with (a) first. In our planning model we must say what

es the database must have for an operator to be applicable to it.
iIStance, for the robot to go from x to Y, he must first be at x.

€ can say that [AT ROBOT ?X] is a precondition of [GO ?2X 2v¥) i.e.



] fl'QXJ must be true in a database (s, say) before we can apply
[Go?x ?¥] to produce a new database, [DO [GO ?X ?¥] s]. Similariy the
preconditions of [PUSH ?Z ?X ?Y] are [AT ROBOT ?X] and [AT 22 ?X].
Thus each operator will have associated with it a pattern called its
precondition, and this precondition must be true in a database if the
operator is to apply to it.

We now turn to (b), representing the effects of the operator.
These are represented in our planning model by instructions about how to
modify a database when an operator is applied to it. For instance,
when robot goes from x to y, we should delete the fact [AT ROBOT 2Xl and
add the fact [AT ROBOT ?¥]. &Similarly when the robot pushes z from x
to y, we should delete [AT ROBOT ?X] and [AT ?Z ?X] and add [AT ROBOT ?Y)
and [AT 22 2Y¥].

In general most facts remain true when an operator is applied. 2.9,
the pictures stay on the wall, when I pour the tea. (explosions are a
notable exception). Therefore it is most convenient to list what old
facts become false (or unknown) and what new facts become true. So each
operator has associated with it two patterns, called the add and delete
lists. The new database is formed by taking the old database and first
subtracting the delete list, then adding the add list.

The Frame Problem(s)

Unfortunately, representing the effects of an operator is not as easy
as this. The problems are collectively referred to as the frame procblem
(The name comes from an early proposed solution to them). We discuss
these problems in the order of their increasing difficulty.

The first problem we have already dealt with, namely, we overcome
the tedium of listing all the facts which remain true, when an operator
is applied, by only mentioning (in the delete list) those which becomse
false (or unknown) .

The second problem is one of computational efficiency. In a real-
istic planning situation, any one of the databases will be very large,
containing perhaps thousands of facts. The search tree similarly may
contain thousands of databases, each of which will be very similar.
Storing all these facts in the computer will use up lots of space.

Every time a new database is created we will have to spend lots of
computer time copying facts into it. The solution is to store only
the initial database and the add and delete lists every time an cperator
is applied. To decide whether a fact is true in a database we apply

— s s Eas s s e s S




fact is in the delete list of the last operator

LA -
40 Else call procedure recursively on the previous database,
end

This procedure can be supplemented by

(a)  earmarking various facts which are always true (true initially,
and cannot be changed by available operators) and adding line 5.

5 IF fact always true then true.

(b) checking if the fact was in the Precondition of the last
eperator, in which case it must have been true then and has not been
deleted since. :

i.e.

35 Else if the fact is in the precondition of the last operator
then true.

There is no reason why these solutions cannot be adopted in the situation
calculus formalism, but they are suggested by the sequence of databases.

The last problem is the most serious and is still an open one, namely,
that the effects:of an Operator may be more subtle than can be represented
by simple add and delete lists. we delay further discussion of it until
later,
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ROBOT PLAN FORMATION 2

(Making Plans)

mllant.i.g Boxes Again

We now turn our attention to how to actually make a plan given a
description of the task and the operators. We will work through the
"collecting three boxes" example in detail.

The Initial state is

[AT ROBOT A] [AT BOX1 B] [AT BOX2 C] [AT BOX3 D)

call this state sl

The Final state must satisfy the pattern
(AT BOX1 7X] [AT BOX2 ?X] [AT BOX3 ?X]
The operators are described in the following table

Operator Table
r 1 3 : 1
Chbratis Preconditions Delete List |  Add List é
[eo ?x ?v] [aT ROBOT ?X] |[AT ROBOT ?X] [aT ROBOT ?Y¥]
[pusH 72 ?X ?Y) [AT 72 ?x] { [AT ROBOT ?X] [AT ROBOT ?Y]
(AT ROBOT ?x]1 .[AT ?2 ?X] (AT 22 ?Y¥]
i

The plan we will build up is:

[Go A c] [pusH BoxX2 c B] [GO B D) [PUSH BOX3 D BI
As we build this plan up, we will need to refer to the intermediate states,
80 it will be helpful to define them now. They are defined by the follow-

ing diagram.



Planned State Sequence

sl = [aT rOBOT Al [AT BOX1 Bl [AT BOX2 €] [AT BOX3 DI

4’[60 acl

82 = [aT ROBOT c] [AT BOX1 B] [AT BOX2 c] [AT BOX3 D]

[PusH Boxz 'c *5]

83 = [aT roBOT B] [AT BOXl B] [AT BOX2 BI l:ir éox:i D]
[co B D]
W
s4 = [aT ROBOT D] [AT BOX1 B] [AT BOx2 Bl [AT BOX3 DJ]

!
} (PUSH BOX3 D Bl

85 = [AT rROBOT B] [AT BOX1 B] [AT BOX2 B] [AT BOX3 Bl

The Plan

At each stage of building the plan we consider the current state and
plan, and the goals we have still to achieve. Initially we are in state
§, with the goal [ar Boxl ?x] [AT BOX2 2X] [AT BOX3 ?X] and no plan.
Our first step is to see whether we can satisfy this goal in the current
state. We can satisfy [AT BOX1 ?X] by assigning B to ?X. This leaves
us with the goal [AT BOX2 B] [AT BOX3 B] whi;h is not satisfied in 8,
and becomes our first difference. We concentrate on trying to achieve
one of the facts, say the first [AT BOX2 Bl, and look for a means of

reducing the difference. A means would be any operator, that contains

in its add list, a pattern which matches [AT BOX2 Bl. The only such
operator is [PUSH ?Z 2X ?¥], which contains [AT 22 ?Y]. We assign BOX2
to ?Z2 and B to ?Y, and decide to try to apply [PUSH BOX2 ?X B]. But
for an operator to be applicable to a state, its preconditions must be
satisfied, so we must check [AT BOX2 ?X] [AT ROBOT ?X] in S,- We can
satisfy (AT BOX2 ?X] if we assign C to ?X, but then [AT ROBOT C] is not
true and becomes our second difference. Again we look for an operator
with a matching pattern in its add list, and first find [GO ?X ?¥] with
pattern [AT ROBOT ?¥]. We match C to Y, and try to apply [GO ?X CJ.

The preconditions of the operator are satisfied in 8., if we assign A to

1




Now the preconditions of [Go A Cl are satisfied and we apply it to
Create state S,. Similarly the preconditions of [PUSH BOX2 C B] are
Satisfied so we apply it to create state s_.

3
We are now left with the task of achieving [AT Box3 B] » in the
current state 83.

This is done in a very similar way to the achievement
of [AT BOX2 E].

We can sum up the above argument by listing the stages of develop-
ment of the plan together with a note about th
Development of Plan
Current Plan
[PUSH BOX2 ?x B]
[PUsH Box2 c BJ

€ reason for the change.

Reason for Change

to achieve [AT BOX2 B]

to make precondition match
[AT Box2 ]

[co ?x ¢l [push BOX2 C B]

to achieve [AT ROBOT C]
[Go a c] [Puss BOX2 C Bl

to make precondition mateh
[AT rROBOT A]
These 2 operators c€an now be applied to Sl to

produce S, and the first
goal is achieved. s

3 is now used for checking preconditions.

[Go a ¢] [rusH Box?2 ¢ B] to achieve [AT BOX3 B]
[PUSE BOX3 ?x B]

[eo A ¢l [pusH BoOx2 C B] to make precondition match
[PUsE BOX3 D BJ [AT BOX3 D]

[co A ¢l [pusny BOX2 C B]
fGo 2x D] [pusH Box3 D B]
[co A ¢l [puse BOX2 C B]

to achieve [AT ROROT D]

to make precondition match
{eo B D] [PUsH Box3 D B]

goal is achieved.

Search

The process of making a plan described above really involves search.
At any stage there may be several breconditions or goals (e

and [AT ROBOT 7x]) remaining to be satisfied and we must at
Some order.

+g. [AT 2z 2x)
tempt them in
There may also be Se'reral operators applicable (e.g. GO and
» and these must be attempted in some order. In each case we have

I0Sen to use the order in which they appear in our operator table.

This order was carefully chosizn. We never had to remake a choice.

ld have got stuck in all the mormal ways, We might have got in a



We might have got into a situation where no operator was applic-
able. We might have produced a non-optimal plan. We could recover
from these situations by remaking one of our choices.

Note that the search space was not as big as it would have been if
we had just tried putting together operators in random order. For
instance every attempted plan must include the PUSH operator. The
search tree is made smaller by the use of G.P.S. like means/ends analysis.

*Exercise 5.1

Think of a non-optimal plan for the collecting three boxes example.
At what points must we exercise different choices to get this plan rather
than the previous one?
Protection

Note that all the conjuncts of the final goal must be simultanecusly
true at the end and all the preconditions of an operator must be true just
before the operator is applied. Unfortunately, a goal, once achieved,
can be deleted later by the effect of a subsequent operator. In our ex-
ample [AT BOX1 B] was true initially, but it could have been inadvertantly
deleted, during the course of achieving [AT BOX2 B] or [AT BOX3 BI.
e.g. Suppose we have reached the state

B

55
:r.éét D

The robot must go to D to collect Box3. Suppose it (stupidly) tried
to get there by applying, [PUSH BOX1 E DI. The resulting situaticn
would be

L]
A [1§2]}D

robot

[AT BOX1 B] would be deleted - a retrograde step.

R T

.
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How can we prevent this happening? We could insist that PUSH be not.
used to achieve goals like [AT ROBOT D]. Unfortunately there are situat-
ions in which we prefer PUSH to GO, e.g., Achieve [AT ROBOT D] [AT BOX1 DI.
In any case this is an example of a wider problem - how not to destroy an
achieved goal during the achievement of a subseguent one. People sometimes
have trouble with this, e.g. "How can you take your car to the garage, then
come home but leave it there?".

Another solution is to protect achieved goals and preconditions, until
they are no longer needed, i.e., mark them in some way and arrange that any
operator, which tries to delete a marked fact, is not incorporated in the
plan. Thus once we had achieved [AT CAR GARAGE], no operator which deleted
this would be considered, and we would have to go home by bus. Of course

when we have achieved [SERVICED CAR], this mark would be removed.
Stacking Boxes

We now further debug our plan formation recipe, by considering a new
example. We will consider a robot with a single ability, he can stack

and unstack boxes. We will express this by a single operator [MOVE ?X ?Y 22],
which means "move box X from place Y to place z". A place can be another box
or the floor. In our very simple world all boxes are assumed to be the same
Size, so in order for the operator to be applicable, place Z must be "clear" -
that is, if it is a box there must be no other boxes on it. To simplify
matters further, we will assume that there is always room on the floor, by
asserting that the floor is always "clear". To make box X easier to manip-
ulate we will further insist that it must be "clear" before it can be moved.
We can sum all this up by the following table and diagrams.

Operator Table

Operator Preconditions Delete List Add List |
PIZN'E X ?Y ?2] [DIFF ?X ?72] [oN 2x 2¥] [on ?x 22)
[DIFF ?Y ?2] [cLEAR ?Z] [cLEAR 7¥]
[ON ?x ?Y¥] [CLEAR FLOORI
[CLEAR ?X]
[CLEAR ?Z]




There are three cases to consider.

(1) (ii) (1ii)

s A :

—————

EE—
L
L

¥ Z

Note [CLEAR FLOOR] is needed in the Add List because it is inadvertantly
deleted in case (iii). This begins to show the inadequacy of add and
delete lists for dealing with the effects of operators.

A Three Box Problem

Consider the problem defined by the following diagram.
Initial State, S

- A
Final State
c B
A B c
FLOOR FLOOR

We can describe the initial state by
[oN c a] [ON A FLOOR] [ON B FLOOR]
[cLEAR c] [CLEAR B] [CLEAR FLOOR]
[DIFF A B] [DIFF B C] etc.

We can describe the final goal by
[on A B] [ON B C]

Suppose we decide to work on [ON A B] first. We pick the only
relevant application of an operator [MOVE A ?Y Bl. We can satisfy all
but one of the preconditions of this by choosing Y to be FLOOR. We are
left with the precondition [CLEAR A]l. The only relevant operator ap-
pPlication for reducing this is [MOVE ?X A ?2], and the preconditions of
this are all satisfied if we let X be C and Z be FLOOR, so the plan is

now

[MOVE ¢ A FLOOR] [MOVE A FLOOR BJ

=

— —



%is partial plan can now be executed and achieves [on a B]. It creates
the state

A State S

o ]

So we protect [ON A B] and proceed with proving [ON B Cl. The only
relevant operator application is [MOVE B FLOOR CJ. Unfortunately a
precondition of this is [CLEAR B] and the achievement of this would undo
[OoN A B], which is protected.

This difficulty arises because we tried to achieve the 2 goals in-
dependently with 2 plans, and then put these plans one after the other
i.e.

[MOVE C A FLOOR] [MOVE A FLOOR B]
followed by [MOVE B FLOOR C] .

In fact the 2 goals interact and their plans have to be intermingled in
order to achieve both goals at the same time. (Trying the plans in
reverse order results in a similar difficulty). So we try inserting
the new operator [MOVE B FLOOR C). in different places in the previous
plan. It turns out that the sequence

[MOVE C A FLOOR] [MOVE B FLOOR C] [MOVE A FLOOR BJ
works.

Exercise 5.2
Consider the problem defined by the following diagram.

Initial _ Final

State ;- S State F s
| et
|
! B J A
: ! H

a) Give a description of the initial state
b) Give a description of the final goal
€)  Give a plan using the MOVE operator
d) Draw a diagram of the planned state sequence
*e)  Show how your plan could have been discovered by a planning




program, by listing the stages of its davelopment,giving

reasons for each change.

Exercise 5.3

Design a set of robot operators, which will enable the robot to turn
a light switch on.

i.e. Starting from the initial state

B,
ROBOT

2
:
g ER S

achieve the goal [STATUS SWITCH ON]

Describe the initial state with the facts:

[AT ROBOT Al [AT BOX1 B] [AT SWITCH C]

[SsTATUS SWITCH OFF] [ON ROBOT FLOOR] [TYPE BOX1 BOX]
Give the robot the 2 operators GO and PUSH described earlier. In addition,
give him an operator [TURNON ?X], which is applicable provided that X, the
switch, is initially off, the robot is standing on a box and the box, robot
and switch are at the same place. This operator changes the status of the
switch from off to on. To get on the box the robot will need an additional
operator [CLIMBON ?X], which is applicable provided X is a box, the robot is
initially on the floor and both are at the same place. You will need to

alter PUSH so that it can only push boxes, and both GO and PUSH to make sure
the robot is on the floor before they are applied.

a) Describe the four operators by drawing an Operator Table giving
their preconditions, delete lists and add lists.

b) Describe a plan for achieving the task and draw a planned state
sequence diagram.
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ROBOT PLAN FORMATION 3

(Assorted issues)

cOntrollim Search

During the process of making a plan we have to exercise various
choices.
i.e. we have to choose
a) Which unachieved goal or precondition (hereafter, collectively
called subgoals) to work on next.
b) Which fact from the database to try to match the subgoal
against.
¢) Which relevant operator to try to apply.
Making these choices badly can cause us to:
a) go into a loop
b) work on a branch containing an unachievable subgoal,
¢) Find a non-optimal plan.
It is obviocusly of crucial importance to make these choices sensibly.
The following diagram 1llultratoi a stage of the development of the
plan to collect three boxes.
Current Database
[AT ROBOT A] [AT BOX1 B] [AT BoX2 ¢] [AT BOX3 DI

Current Subgoals
[AT BOX2 ?X] [AT ROBOT ?X]/[AT BOX1 B] (AT BOX2 B] [AT BOX3 B]
Current Plan b8

5

\ 3
[pusH BOX2 ?X B]

The top line is a description of the current (and initjial) state. The

second line lists the various goals and preconditions which have yet to

be satisfied, The 3 goals on the right of the stroke are the original

- 3goals. The underlined goal has already been satisfied. We are work-
~ ing on the next one, [AT BOX2 B]. The bottom line lists the partial -

plan, containing one operator (PUSH BOX2 7x B). The operator is point-




ing, with a single headed arrow, at the goal it is meant to achieve. It
is pointing with a double headed arrow, at its preconditions.
To continue with building up the plan we must choose one of these

preconditions to work on next. If we choose to work on [AT ROBOT 2X]
- next, something silly happens. [AT ROBOT ?X] is matched against

[AT ROBOT Al i.e. A is assigned to X. We next try to satisfy [AT BOX2 Al.
Even if we are very sensible (or lucky) with the remaining choices, we are
now bound to get a non-optimal plan. e.g. [GO ROBOT C] [PUSH BOX2 C A]
[PUSH BOX2 A B] .,. etc. What kind of control mechanism would choose to
work on [AT BOX2 ?X] first? e 3 :

""" The area is still controversial, but one method is to arrange the
subgoals into a hiara.rchx, according to how difficult they are to satisfy,
and always work on the hardest subgoal first (c.f. G.P.S. ardering of
differences and difficulty of goals). According to this method
[AT BOX2 ?X] is tackled before [AT ROBOT ?X] because it is more difficult
to get a box to a place than the robot to a place. At the top of the
hierarchy are the subgoals which are impossible to change, unless they are
already true, i.e., thosé like [TYPE ?X BOX] and [AT SWITCH ?X], which no
available operator can effect, '

A hierarchy for the "switch on the light" example is given below

top [TYPE ?x ?Y]
[AT SWITCH ?X]
[sTaTus 7x onl
[oN ROBOT ?x]
[aT BOX 2x]
bottom  “ [AT ROBOT ?X]

At present, these hierarchies have to be provided by the human érogramer
for each new domain. Work is proceeding on the problem of having the
planning program work them cut for itself, by examining the operators
which achieve each subgoal.

If we correctly choose [AT BOX2 ?X] and satisfy it by assigning C to
X, we must then work on [AT ROBOT C]. Since this fact is not in the data-
'base, we must £ind a relevant operator to apply. Both GO and PUSH have
‘patterns in their add lists of the form [AT' RO'Bd‘I"?Y’], so both are relevant,
We can choose either but would clearly prefer &8 Choosing PUSH would lead
to a non-optimal plan,
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How can we express or characterize our preference, in order to get a
general solution to the problem? Notice that if one choice of operator
- works, we do not need to try another. This is different from the situ-
ation with subgoals, where all subgoals need to be satisfied for a
successful conclusion. So the sensible choice is to choose the easiest
operator first. The easiest operator means the one with the easiest
Preconditions. We can see that GO is easier than PUSH, since the

Preconditions of GO are a subset of those of PUSH.
Macro Operators

It i pc;ssihla for our robot to indulge in an elementary form of
learning, by remembering the plans he constructs. In effect a plan,
properly remembered becomes a new ability, i.e., a new operator (some-
times called a macro operator). Properly remembered here means, of
course, not only remembering the sequence of operators which constitute
the plan, but also working out under what conditions the plan can be
applied and what its effects are, i.e., we need to know the preconditions,
add list and delete list of the new operator. These can all be worked
out (at the cost of some book~keeping) by studying the derivation of the
plan, The preconditions of the new operator are just the subgoals which
were not achieved by an operator, but by direct reference to the initial

_state. The add and delete lists can be worked cut by comparing the

initial and final state.

To be useful these macro-operators must be generalized, before they

are stored as new operators. For instance, if we were remembering the plan

to switch on the'light we would not want to insist that it be BOXl we climb
onto - any box would do. Similarly the precise places involved are not of

~ interest. In practice the operators are generalized before the precon-
.4
- dition and, add and delete lists are worked out,

..,.

but the same principles

Even with generalization the macro operators are still susceptible to

t changes in the initial situation. Suppose that the initial state
he switch on light example were:

mno;AIZ] g
:

]
o




d like the robot to be able to adapt the plan
{Go 2Pl ?p2] [PusH ?B ?P2 ?P3]1 [CLIMBON ?B] [TURNON ?S]
and only use the last 3 operators. Otherwise it might pick up BOX1 and
take that to the switch., Therefore the plan is stored in a triangular
table, with the preconditions and effects of each operator stored separ-
ately. This is explained in the reference. The details are not im-
portant. Using this the robot is able to execute subplans of the plan.
He is also able to recover to a certain extent when the plan goes wrong
during execution. (See last section on executing plans).

Great care must be exercised over the formation of macro operators.

Properly used the robot can be taught how to achieve a complex task that
it previously found too difficult, Suppose that the search tree of a
task is so large that the robot cannot find a pPlan in a reasonable
length of time (an all too frequent occurrence). By giving it a judicious
training sequence of simpler tasks, the robot can be made to learn just those
macro-operators he needs to solve the original task. Let loose on it again
he quickly finds a short plan consisting of these macro-operators. However,
if we allow the robot to form macro-operators for every task he performs,
he quickly becomes bogged down with hundreds of operators with long pre-
conditions and add and delete lists. The search trees of all tasks become
too large for him to find any plans. Getting the robot to decide for him-
self what is worth keeping, and what is not, is along way off.

Exercise 5.4

From a macro operator called [COLLECT ?B ?Pl ?P2 7P3] for collecting
2 boxes. Look at the operator table for GO and PUSH to decide what the
preconditions, add list and delete list of the new operator,COLLECT, should
be.

The Frame Problem re-visited

We now return to the most serious aspect of the Frame problem - that
the effects of an operator may be more subtle than can be represented by
simple add and delete lists. For instance, we may have to refer to the
previous state before we can be sure precisely what to add or delete
e,g.

(i) How much tea is left in the pot after we have poured one cup?

(ii) pushing one box, may change the position of another if they

are joined by a rod or rope or one is on top of another.




- We can think up situations in which the contents of the add and delete
BEESES depands on an arbitrary amount of deduction. If this deduction is

£00 computationally expensive to perform, e.g. an explosion, or if we have
fect information about the previous state, then we may be unable to
the effect of an operator. We may resort to:

(a) predicting nothing

(b)  predicting the "most likely" event and being prepared to be
contradicted

(e)  adding or deleting laws instead of facts

(@)  performing the operation and observing the result.

Can you think of circumstances under which you would resort to

m of the above possibilities? Can you think of any other possibilities?
The plan formation program we discussed in these lectures modelled the
effects of operators using the add and delete lists. So it was not able
to handle these more subtle effects. What modifications to it are required,
and whether these modifications would enable us to preserve our solutions to
the other aspects of the frame problem is an open guestion.

Executing Plans (amdthe Qualification Problem)

If the plans our robot janitor is to make are ever to be put to use,
there must be a procedure associated with each operator, which will

actually perform the operation, e.g., really make the robot go from a to

b. Such a procedure is called the operators action routine. We must

&

lg-moful to distinguish the operator from the action routine. The
.'_Er_t_tntor, with its preconditions, and add and delete lists, is only a

of the action routine, just as our databases are models of states
the real world.

Because our planning program is only a model, it is liable to go
‘due to unforeseen difficulties. For instance, we may make a plan
© to America, by driving to the airport by car, catching the 3.00 p.m.
etc., only to find that the car runs out of petrol halfway or the

S crew are on strike. This problem is called the Qualification
Again the problem has been foolishly named after a possible
‘though not one that was ever seriously proposed. The solution
one could hedge ones plans about with various qualifications,

‘to do if you ran out of petrol etc. This may be possible

€ worlds, but it is a well known platitude that one "can't

- everything” for more realistic situations. Note also that we

d plans with conditionals to handle qualifications.



P The solution to this problem would seem to be, that one would want to
write qualifications into the plan to deal with the most likely difficult-
ies, but that, more importantly, the action routines must have the capacity
to fail and pass control back to the planning program, together with a
message about what went wrong. Unfortunately, how to provide a measure
of what is "most likely" and, how to decide what has "gone wrong" with a
plan, are not well understood at the moment. .
Coda

Several A.I. groups have written robot plan formation programs. The
best known program is probably S§.T.R.I.P.S. - the Stanford Research
Institute Problem-Solver. This program is used by SHAKEY, the Stanford
Research Institute robot, to form plans for the tasks he is given. You

can read more about the program, and possible extensions of it, in the

Reference

Fikes,R.E., Hart,P.E. and Nilsson,N.J. "Some New Directions in Robot
Problem Solving", in Machine Intelligence 7, eds. Meltzer, B., and
Michie, D., pd05-430 E.U.P. 1972.
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ge — 1: Sentence Genmeration
Introduction

~ Reasons for studying computer processing of natural language
(1) understanding language;
B sndorgtansing 1ntellipence (langusge as' the window into the mind);
(3) natural language would be a very desirable way to communicate
with computers and would 'democratise' computer use;
(4) it is interesting,

How we understand and respond to sentences is very mysterious, and
‘introspection is little help,

Computer studies of langusge involve linguistics (generative grammar),
_ logic (logical languages as a possible unambiguous standard way of
‘expressing meaning of natural languages) and computer science (compiling
techniques and data representation).

2. The insult program

TO ELEMENT 'N 'L, QESWX

1§ IF :N=1 THEN RESURN PIRST

2@ ELEMENT (:N-1) (BUTFIRST .L}
END

nth element of L

TO CHOOSEANY 'L

1¢ NEW 'R

20 MAXE 'R (RANDOM ((COUNT :L)-1))41
:ﬂ RESULT ELEMENT :R :L

* Chooses a random element of L

DOANY 'L
' APPLY CHOOSEANY 'L

s a random element of L, a list of command namesg
'X
'YPE SPACE AND TYPE :X

its argument preceded by a space

'GET AND OUT 'LOST

AND OUT 'JUMP AND OUT 'IN AND OUT 'THE AND OUT 'LAKE



TO MISNAME!
1@ OUT 'ROTTEN AND OUT 'SWINE
END

TO MISNAME 2
1¢ OUT 'FILTHY AND OUT 'BEAST
END

TO MISNAME
¢ DOANY [MISNAME! MISNAME? ]
END

70 INSULT
1@ SUGGEST AND OUT 'YOU AND MISNAME
2¢ PRINT NL

END

3. The insult grammar
insult => suggest 'you misname
suggest -> 'get 'lost
suggest -> 'go 'jump in 'the 'lake
misname -> 'rotten 'swine
misname -> 'filthy 'beast

A context-free grammar is a set of production rules, made from
non-terminal symbols (naming phrases) and terminal symbols (quoted words).

Each production rule consists of & non-terminal (on the left) and a
list of terminals and/or non-terminals (on the right).

There is a starting symbol (here it is insult).

You can think of the grammar in two ways
(1) An inductive definition
'filthy 'beast is a misname
'rotten 'swine is & misname
'go '"jump 'in 'the 'lake is a suggest
'get 'lost is a suggest
A suggest followed by 'you followed by a misname is an insuls.
(ii) As a recipe for generating sentences
To generate an insult generate a suggest then 'you then a misname
To generate a suggest generate 'get then 'lost
or To generate a suggest generate 'go then 'jump then 'in then 'the
then 'lake

To generate a misname, etc.

Exercise,

—



Yim.s 0. 71,00,

- e f
L Tary

;-%Qﬁ'lﬁkitg a grammar to produce at least 100 insults in any
language you choose, (try to manage with less than 100
production rules).

ump -> 'one
ump -=> 'two
ump -> 'nine
umpteen -> 'ten
umpteen -> 'eleven
on ke
umpteen -> '"nineteen
s? umpty -> 'twenty
- @ & & & & 2 = »
5 umpty => 'ninety
:; upto99 => ump
upto99 -> umpteen
upto99 -> umpty
upto99 => umpty ump
umphum => ump ‘hundred
upto999 -> upto99
upto999 -> umphum
upto999 -> umphum 'and upto99
(* means a hard exercise, ** means a mini-project)

L - B e 1.4a Continue by defining upt0999999,

& ﬁ: 1.4b Do it in French or German or Gaelic or whatever,

E: se 1.4c Program the random generation for uptodss (ynu can pretend

3 to 8 don't exist to avoid tedium).
ge 1.4d Write a program to take a number expressed as ‘& list of
digits and print its name,
2 1.4e Adapt 1.4d to write a teaching program which generates
lists of digits at random, generates the English and
French (or language X) name simultaneousiy prints one,
asks the user for the other and teils him if he is right,
We could represent the grammar by

 quote one][ump quote twol...[ump quote nine]
=ET quﬂte tsnﬁ sooe

quote mnty] ee

ump | [upto99 umpteen][uptos9 umpty umpJ

]



.4

tion to generate random number names from this
sentation of the grammar instead of the representation by
individual functions we used before.
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Generating Blocks World Sentences

- 1. Blocks World
A world rather simpler and less disturbing than our own, although
- perhaps a trifle dull, is the Blocks World.

:,;'E-l.
41 B
31 green
1 D
4 green
. A ¢
1 red red
0 I 107 NG INgRergt gl 8 g 10 11 . 12 1% 14 15 16

* There are four square blocks 4,B,C,D
of fixed size 2 units for 4,B,C and 4 units for D

of fixed colour red or green
of variable position (x,y) denoting mid-point of base
e.g.- A has z=3, y=0
B has x=10, y=2

{5e There are relations between any blocks a and b
- 1 1
a is to the left of b if x + /2 size + /2 size <x

& is to the right of b if b is to the left of a
& is on b if yaaybﬂiza

b
and & is not to the left of b

and a is not to the right of b.

 Exercise 2.1 Define gbove similarly., (But what exactly does gbove mean
in English? Does it mean anything
sxactly?)

Sentences about blocks world

Assertions There is a green block to the left of the big block.
The small green block is on a red block,
The block to the left of the small green block is to
the right of the big green block.

Suestions Is & small block to the left of a green block?
Is & block to the right of a red block a green block?

The 1‘_&’11 oring grammar will generate these and similar sentences:
4




 adj o> 'red ]
adj -> 'green !
prep -> 'on I
prep => 'to the 'left 'of
prep => 'to 'the 'right 'of l
nounphr -> noun 2.8, block
nounphr -> adj nounphr e.g. big block I
nounphr -> nounphr qualif .8+ block on a red block
qualif -> prep clnounphr 2.8+, on a red block
clnounphr -> 'a nounphr ~e+g« a red block l
clnounphr ~> 'the nounphr ©.8. the block on a green block
assertion -> 'there 'is 'a nounphr e.g. there is a green block I
assertion -> clnounphr 'is qualif €.82. & red block is on a red block
question -> 'ig clirbuﬁphr qualif e.g. ig a red block on a rad blol

sentence -> amsgertion

sentence -> question’

(clnounphr means closed nbﬂﬁ ﬂu-asa, no more wwﬂws can be prefixed)

ut-"’a- 3%a

Exercise 2.2a Use a pémy to hemd nimulatsi m a a thrae

Exercise 2.2b

*Exercise 2,2¢

*Exercige 2,24

3. Struc

gentences at rsndom.

Try to find some qtupid éenégnces generated by this

grammar (not just lies, stupid sentences).

Add rules to generate each of the following kinds of sentence:
What is on the small red block?

The big block is green.

A block between the small red block and the big block is green.
Meke up a grammar for recipes in cookery books (add & pound

of sugar, mix in & spoonful of flour, bake slowly). If you
try cooking your random recipes you will discover that
semantics without semantics is nothing but a pain in the gut.

f sentence

A sentence like 'the small green block is on a red block' has a
syntactic structure: here iz a way of showing it

[ [ tne [Tena11][lgreen][biock]]]] 1s [[on]lal[red][bl0ck]]]]]

or as a tree



green  block red block
It does not have the structure

[ [ the [sma11]][Tereen][[blocklis on] [alred]] ] block]

because [bleck is on] and [a red] are not grammatical entities (phrases),
we have for the former structure

|fb10«ek] ~ noun

: [g!mm block] - nounphr

[mll green block] - nouﬁphr

[the small green block] - .clnounphr

-~ [block] - noun

[red block] - nounphr

'.I'I red block] - clnounphr

- [on] - prep

[on 2 red block] - qualif.

) {ﬁle small green block is on a red block]| - assertion

We could easily make the generating program type out an indieation of
structure by making each procedure like nounphr print out its own
s before it starts, so that we get

# PREP on CLNOUNPHR a NOUNPHR ADJ red NOUNPHR NOUN block

ctorially as a tree

QUALIF
PREP CLNOUNPHR
| " il N
on a NOUNPHR
47 e P
red H(;UN
block

phrase 'red block on a green block' could have the structure
z some brackets)
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= Ifu'n:a'[!:rloak[m a green block]]]
or [tred block][on a green hlook]]]

Intuitively these mean the same so the syntactic ambiguity is harmless.
But 'green block to the left of the big block on a red block' could mean

[[green block to the left of the big block] on & red block]
which is B in the picture of section 1
or it could mean
[graeu block[to the left of the big block on a red block]]
and there is no big block on a red block. This is semantic ambiguity.

Exercise 2.5 Check that the grammar really will generate these two
readings of 'green block to the left of the big block on a
red block' and draw their trees as &bove.
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Natural Language — 3: Parsing

1. Some problems about context free grammars:i-
(remember that & grammar describes a set of sentences, just as 'the

even numbers not divisible by 5' describes a set of numbers)

Problem 1 (Generation) Given a grammarT, 1ist the set of sentences
it describes.

Problem 2 (Parsing) Given & sentence and & grammer test whether
the sentence is one of those described by the grammar.

Problem 3 (Induction) Given a set of sentences maeke up & gramuar
which describes them.

Problem 4 (Equivalence) Given two gremmars do they describe the

game set of sentences.
What do you think is the order of difficulty of these?

The parsing problem is the one which interests us next. For
example, does the grammar of the last lecture produce these sentences?

(a) There is a small block on & red block
(b) 1Is a red block on & red block on & red block?
(¢) A& green block is there on the red block

More important, what gtrueture if any does it attribute to them?
Is this structure unique?

2. An example to help us understand the parsing problem

Here is an easy grammar G, gtarting symbol P (using lower case instead of ')

P->aPQ (p1)
P->aQ (p2)
Q->cQ (a1)
Q->1b (Q2)

Does cca come from 1t? How about ab or aach?

Try generating the gsentences of G gystematically.

When you have generated even part of a sentence you can see
whether it could be cca by comparing the terminal symbols (a,b,c) at
the front.

?/
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P
P :
P1 b ¥ /&
aPQ aPQ aQ

No good No good No good

So cca does not come from the grammar G,

How about ab? o ; E
: . ! : . ._l\\
p 2 pevst Biry
L P!
21 X /\ ld
aPQ P
aFQ j///// \\ P1 Ly
aaPQQ saPQR 288
No good No good  No good
* P
P}/,\\iPE PL//,\\\?E
aPQ al aPQ aQ
P1 P2 P/\P2 Q/\
aaPQQ 2aQQ aaPQQaaQQ acQ
No good No good No good No good No good

Continue this systematically. Can you generate ab?

Exercise 3.1 Try to systematically generate sentences from the above
grammar to get aacbb.

5. A parsing program for this grammar

Our convention will be that each phrase has a parsing procedure which is
given a string to parse and returns the remainder of that string after
removing the phrase it is looking for; but if it fails to find it then
it returns 'FAIL., We will write & collection of procedures for the

grammar just given.

TAKEOFF/
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TAKEOFF just tries to remove a given word from a string of words.
P tries P1 and if that doesn't work P2, Similarly Q tries Qi and if
that doesn't work Q2. P1 takes off 'A, if the result is O.K. it
removes a P, and if still 0.K. it removes a Q.

Lo takeoff 'word 'string
if emptyq :string then result 'FAIL

Af not (:word=f :string) then result '"FAIL
result bf :string

end

e.g. takeoff 'A[A B c] = [B ¢]
takeoff 'D[A B €] = 'FATL
1o OK 'x

not (x='"FATL)

end
to

to P 'string (remove a P from front or fail)

new 'stringrem (remainder string)
make 'stringrem P1 :string (remove a P1)
if OK :stringrem jﬁgg result :stringrem
meke 'stringrem P2 :string (otherwise remove a P2)
if OK :stringrem then result :stringrem
result 'FAIL (P2 didn't work either)
end
1o Q 'string

as P but using Q1 and Q2

end

Examples Q[C B 4 4] -> [4 4], Q[a B] => 'Fa1L, P[A B ¢ A] -> [c 4]

1o P1 'string (remove 'A P Q)

meke 'string takeoff 'A :string (takeoff 'A if possible)

if not OK :string then result 'PAIL (FAIL if couldn't take off 'A)
make 'string P :string

if not OK :string then result 'FAIL (FAIL if couldn't take off P)
make "string @ :string

result :string (result is remainder or FAIL)
end
to P2 'string (remove 'A Q)

make 'string takeoff 'A tatring

Af not OK :string then result 'FATL
make 'string Q sstring

result :string



NL,12

Exercige 3.2 Write out some of the procedures needed to parse numbers
with the number grammar given previously (not for all the
productions, just enough to get the idea). Try your

procedures on the machine if you have time.
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The program which we gave in section 3 has three disadvantages

(1) (practical) it is rather long, each production needing a
substantial procedure

(2) (thacretica_l) it will sometimes fail to find a parse when
one exisats,

To understand (2) consider the grammar, starting with R,
R->aQad

Q<>b

Q=>be

Trying this on [a b c] using a program like that of section 3
we get funection calls:-

Rla b d] 1]
R1[a b d] - []
Qv 4] => [da]
Qtlb 4] =sapifd)
But on [a b ¢ d]
Rla b ¢ d] ~> FAIL
Rila b ¢ d] -> FAIL
Q[b ¢ d] > [e d]
Qi[b ¢ a] - [c d]

whereas QZ[b o] d] - [d] which eventually makes P succeed.

(£i20retieal)” it gcés into. én iafinite recursion if. given

productions of the form P -> P... « But this is not fatal
because it is always possible to rewrite a grammar so as to
avoid such productions.

Disadvantage (2) suggeats that we define a function P' which takes

a string as argument and produces a get of strings as result (the empty
set now corresponds to FAIL),

Disadvantage (1) suggests that we go further in search of
brevity and define a function P" which takes a set of strings as
argument and produces a set of strings as result. To be clearer
suppose P is a symbol in the grammar.

Let P be a set of strings - all strings generable from P,

Let P's where 5 is a string be the set of all strings t such that s=pt
for some string p in P.

Lot/

-——
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Let P"S where S iz a get of strings be the set of all strings t such
that s=pt for some string s in S and some string p in B,

We will now write a program for the grammar of section 3 with a
function P" for each symbol P (we just call it P, not P", in 10GO),
We have corresponding functions; from sets of strings to mets of
strings, for each production, For terminal symbols we define a
special funetion takeoff which takes & word and 8 set of strings to a
set of strings,

For each production we simply do the functions corresponding to
its components in sequence. For each non-terminal symbol we do the
function for each of its productions and join up the result. We
start the whole process on a set whose only element is the given
string and expect as result a set whose only element is the empty
string (i.e, nothing remains when a P is removed from the front.)

We represent both strings and sets by lists (confusing, but that is
all LOGO offers).

Here is the program, followed by some examples (we_call the
functions PP and QQ because P is already used for PRINT)

Lo takeoff 'word 'strings
19 new 'string
26 if emptyq tstrings then result []
34 make 'atring £ iatrings and make 'strings bf tstrings
44 Af emptyq :string then result takeoff :word tstrings
58 if sword=r istring then result fput (bf :string) (takeoff sword :
strings)
68 result takeoff :word tstrings
end

to PP 'strings
14 if emptyq :strings then result [J

28 result Join P1 :strings P2 tstrings
end

to QQ 'strings
19 if emptyy istrings then result []
20 result Jjoin Q1 tatrings Q2 istrings

end

tof

FIPENNNTIS | —



. NL.15
to P1 'strings

1 result QQ PP takeoff 'a :strings
end
o P2 'strings

1@ result QQ takeoff 'a +atrings

end
Xo Q1 'strings

10 result QQ takeoff 'c :strings
end

to Q2 'strings
1f result takeoff 'b :strings

gnd

to parse 'string

1% new 'strings

2ff make 'strings PP << :string >>

36 if (count :strings)= # then result 'nogood

6¢ result 'good
end

Example

takeoff 'a {[a b c]] -> [[b c]]
takeoff 'a [[d e]] > []

P2[[a b a][aatr 1] - [[a]]
Pi[[a b d][aatbe]] -5 [[e]]
PP[[a b a][aa tbe]] -5 [[a][e]]

4 if (count :strings)> 1 then result fput 'ambiguous :strings
50 if not emptyq f :strings then result fput 'toolong f :strings

takeoff 'a [[a b c][a d e]T:d c]] -> Hb c][d a]]



= I 1. 12.75
1975/76 NL.16 RMB/4

Natural Language — 4: Translation

We have written random generator programs for insults and for
sentences about blocks, also a parser for a b c sentences. The parser
just said whether a string of words belonged to the grammar; can we
go further and produce a 'meaning' for & sentence? (What is a
meaning? Good question.,) Let us try, as a very simple example, to
get the actual number from a number name. * We will use '<(...)> for
'the meaning of ...',-and we will express the way in which the meaning
of a string depends on the meanings of its components by writing
equations, one alongside each proﬂnntion;

Number grammar with meanings

ump ~> ‘one <(ump) >=1

ump -=> ! two <(ump)>=2

umpteen -» ' ten <(umpteen)>=10
umpty -> *twenty {fﬁmpty3§=20

upto99 -> ump <(upt0993>=<(ump))
upto99 <> umpteen <(upto99)>=<(umpteen)>
upto99 -> umpty <(upto99)>=<(umpty)>
upto99 -> umpty ump <(upto??)>=<(umpty)>+<(ump))
umphum -> ump 'hundred  <(umphun)>=<(ump)>*100
upto999 -> upto99 <(upt0999)>=<(upt099)>
upto999 => umphun <(upto999) >=<(umphun)>

upto999 -> umphun 'and upto99 <(upt0999) >=<(umphun) >+<(upt099)>

Example

[one] is ump <(Tone])s=1

[twenty] is umpty ([ twenty])>=20

[twenty one] is upto99 <([twenty one])>=<([twenty])>+<([one])3=20+1=21
Notice that we use the syntax symbols, ump etc, as variable

hames in the equations standing for any string of that éyntactic class.

If a production involved more than one occurrence, e.g. P -> a Q b Q,
we would have to use subscripts, e.g. <(P)>=...<(QT)>...<(Q2}>-.. .

This/
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is way of specifying meaning goes rather naturally with the

n of context free grammar., Such grammars and our meaning

ons are restrictive but, as you will see, we can extend their
ess 8till using the same basic ideas.
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To program a translater instead of a parser, we need to have
stions which handle not jnsi: remainder strings but also meanings.
In ml a string of words will produce a string of meanings,
er than just one meaning. We can think of the translation
ocess as taking words off the front of the word string and putting meanings
on the back of the meaning string. Thus an (intermediate) gtate of
ne translation consists of & string of meanings (its left) and a
s (its right).

~ Rule Left (meaning string) Right (word string)
[] [two hundred and twenty seven]
 ump/2 [2] “ [hundred and twenty seven]
 umphun/1 [200] [and twenty seven)
| [200] [twenty seven]
umpty/1 [200 20] [seven]
ump/7 [200 20 7] 0
upto99/4  [200 27] ' []
upto999/3  [227] _ []

We finish with a unit string of meanings on the left and an empty
string of words on the right.

We want to use the same technique as our second parsing program,
 adapted by using states instead of just strings of words. So our
~ translation functions will all take a get of states as argument and
- produce 2 get of states as result. They are

‘meaningof word -> meaning:
takes an individual word to its meaning or NOMEATTIG if it asg noase.

tate meaning-string word-string -> state
“plhl a state represented by a list of the two.

ins word state -> T
~ produces true if the right of the state begins with the word, false

X “" ~ otherwise.
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newstate word state! -> statel
only used if state! begins with ‘the word.
Removes this word from the right and puts its meaning (if any)
on the back of the left. -

takeoff word state-set! -> state-set2 g
for each state in state-set! which begins with the word, remove
the word from the right and get a new state with the meaning of
the word on the back of the left.

example: if meaningof 'two = 2
takeoff 'two mkstate[1] [two three fﬂur]
- [[1 2] [three four]
We need some way of aah&éihfiné'éﬁﬁé“ﬁéﬁantiha with each :
production. Congider
upto99 -5 umpty ump <(upto99)> = <Eﬁﬁ§£fj> + <(ump)>

After we have used this production and called the umpfy and ump
functions we should have a set of states each of whose left is
[eeeee x 3] where x is the meaning of the umpty part and y is the
meaning of the ump part. We need to add these two together to pro-
duce a state with x+y on the end instead. A general function
dosemantic will do all this for any semantic operation, not just

addition.

nargs function-name -> N Number of arguments (1 or 2)
dosemantic! function-name state -> state-set
function-name names an arbitrary semantic function.
This is applied to the last element of the left of the state
and the result replaces it (or if nargs gives 2 to the last
two elements and the result replaces them). A set
consisting of just this state is produced, unless the result
of applying the given function was FAIL when the empty set is
produced (production was semantically inapplicable).

example: dosemanticl 'sum mkstate {1 2 3] [four fiﬁe]
-> [11 5] [four five]]

dosemantic function-name state-set! -> state-set2
does dosemantic! to each state of state-set! and collects
together all the results.

Here then are the general producedures for writing translater

programs.
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p 3@ make 'meaning meaningof :word

s 'left 'right
1t << :left :right >

s 'word 'state
1P new ‘'right
2§ make 'right f bf :state

3@ if emptyq :right then result false

= ﬁ Af :word=f :right then result true
5@ result false

{ :!_m

1o newstate 'word 'state
1 new 'left 'right 'meaning
2@ make 'left f :state and make 'right f bf :stete
4 if :meaning="nomeaning w 1left (bf tright)
56 result mkstate (lastput smeaning :left) (bf :right)
snd .
Yo takeoff 'word 'states
1% new 'state
20 if emptyq :states then result []
3% m 'state f :states and m 'states bf :states
4 if begins :word :state then result fput (newstate :word :state) (
takeoff :word :states)
50 result (takeoff :iword :states)
end

1o desemanticl 'fn 'atate

1@ new 'left 'right 'fnresult

2f) make 'left f :state and make 'right f bf :state

3% if 1=nargs :fn then m 'fnresult apply :fn (last :left)

35 if 1=nargs :fn then m 'left bl :left

4f if 2=nargs :fn then m 'fnresult apply :fn (last bl :left) (last :

left)

45 if 2=nargs :fn then m 'left bl bl :left

5§ if :fnresult='fail then result []

6@ result << mkstate (lastput :fnresult :left) :right >>
end

1o dosemantic 'fn 'states

1 new 'state

Zﬁ if emptyq :states then result []

3% result join (dosemantic! :fn f :states) (dosemantic :fn bf :states)

end
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£ Usi the translation pr on number eg

To use the procedures defined above to translate a particular
grammar with particular meaning specification, we need to write some more
procedures corresponding to the rules of that grammar. Below are the
procedures for the number name grammar up to 99. The final procedure
test! tries upto99 on a given string of words, putting a full stop at
the end and ensuring that only final states which.have devoured all the
string upto the stop are printed. (The basic procedures are in my
file NLTRANS and the ones below are in NLNUMTRANS. )

Exercise 4.1 Try to work out on paper in outline the computation
produced by testi [mty h‘o]. What procedures are
called with what arguments? (Don't do all the details.)

Exercise 4.2 Write the extra procedures needed to .do up to 99.

Number name translation procedures

1o meaningof 'word
1§ if :word='one then result 1
2¢ if :word='two then result 2
3¢ if :word='twenty then result 20
9% result 'nomeaning

end

to nargs "fn
1§ if :fn-'sum then result 2
20 if :fn.'timesi@f then result |
3@ break

end

to ump 'states

1§ join ump! :states ump2 :states
end
to umpl 'states

1§ takeoff 'one tstates

end

to ump2 'states
1§ takeoff 'two :states

Il

f=h

o
L=
e

— — — — [ ____8
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enl 'states

f 'ten :states

I takeoff 'twenty :states

099 'states

Join join join upto991 :states upt0992. tastates upto993 :states
994 :states

;0991 'states
ump :states

4 ‘upto992 'states
umpteen :states

0 upto993 'states
umpty :states

, upto994 'states
# dosemantic 'sum ump umpty :states

'é‘pﬂ 'wordstring
# p takeoft 'stop upto99 << mkstate [] (lput 'stop :wordstring) >>
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uaee - 5: Conve tii about blocks
nle approach: phrases translate to sets

*Tf us try to use our translation program on gimple sentences about the
seks world, the sentences generated by the grammar we gave earlier, It
isonable to take the phrases to have the following meaning:i-

enounphr &l = la set of blocks

} - a property of blocks
- a relation between blocks
- ' no meaning, just a printing effect

ntence

e ]
~ How should we represent these meanings in our program? The most

Straightforward way is:-

i

- set of blocks - gset of blocks

property of blocks - set of blocks with that property

3 ;inlatiun between blocks - set of pairs of blocks in that relation

-

2 as usual we use LOGO lists for sets, and we use ﬁarda to name blocks.

block - [aoB ¢ D] ;
red - [aic]

small - [4 B ¢]

small red block - [A]

left - [[a c1[®B pllc p]]

left of red block - [A]
big block left of red block - []

We can manufacture these meanings with three main semantic functioms:-

PROP :XS :¥S - list of all elements occurring in both the lists
XS and YS {intarsection)

:XYS :¥S - XYS isa list of pairs. " The résult is the list
of first elements of those pairs whose second

element is in YS.
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— if the list XS5 has exactly one element
XS, otherwise prints a grumble.

For example DOPROP[A B ¢][B 4 »] = [a B]
porer[[4 ¢][B »][c p]1[B p] = [B ¢]

Now we write down the meanings of phrases as before:-

then result is

simpnounphr -> noun <(noun)> A2

simpnounphr -> adj simpnounphr doprop<(adj)><(simpnounphr)>
nounphr -> simpnounphr qualif doprop<(qualif)><(simpnounphr)>
nounphr -> simpnounphr <( simpnounphr)>

qualif -> prep clnounphr dorel<(prep)><(clnounphr)>
clnounphr -> 'a nounphr ((nounphr))

clnounphr => 'the nounphr uniqua((nounpﬁr))

assertion -> 'there 'is 'a nounphr if emptyq<(nounphr)> then p 'liar
la else p 'correct
assevtion -> 'olncunpiz 'ns qualif if emptyq doprop<(qualif)><(clnounphr)>

then p 'liar glse p 'correct
question -> 'is clnounphr qualif if emptyg dgprop((qullif)>((c1nuunphr)>

then p 'yes else

p 'no

Here then is the program, using takeoff and dosemantic as above.

Naive blocks program

TO MEANINGOF ‘W
1 IF :W='BLOCK THEN RESULT [A B C D]
2@ IF :W='BIG THEN RESULT [D
3¢ IF :W='SMALL THEN RESULT [A B ]
IF :W='RED THEN RESULT [A ¢]
5¢ IF :W='GREEN THEN RESULT [B D]
6¢ IF :W='ON THEN RESULT [[B C]]
78 IF :W='LEFT THEN RESULT [[L ¢] [B ] [c n]]
IF :W="RIGHT THEN RESULT [[c 4] [p 3] [p ¢]]
99 RESULT *'NOMBANING
END

TO MEMBERQ 'X 'XS
1 IF EMPTYQ :XS THEN RESULT FALSE
2¢ IF (F :XS)=:X THEN RESULT TRUE
3% RESULT MEMBERQ :X BF :XS
END

TO DOREL "XYS 'YS

1 NEW [XY FIRSTSUFEF]

2f IP EMPTYQ :XYS THEN RESULT []

3 M 'XY F :XYS

4§ M 'FIRSTSOFBF DOREL BF :XYS :YS

50 IF NOT MEMBERQ (F BF :XY) :YS THEN RESULT :FIRSTSOFBF
6f IF MEMBERQ F :XY :FIRSTSOFBF THEN RESULT :FIRSTSOFEF
7% RESULT FPUT F :XY :FIRSTSOFBF
END

e [um— ===

[E——

|
|
I
I
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S THEN RESULT []
RQ F :XS :¥S THEN RESULT FPUT (P :XS) (DOPROP BF :XS :YS)
mer BF :XS :YS

0P :Ys :XS

'-;q g 'XS

¢ (count :xs;= 1 THEN RESULT :XS
COUNT :XS)= # THEN RESULT 'FAIL

1AMBIGUOUS AND QUIT

]
#
§

EMPTY 'XS
EMPTYQ :X5 THEN 'CORRECT ELSE 'LIAR

NOUN 'STATES
TAKEOFF 'BLOCK :STATES

ADJ 'STATES

| JOIN JOIN JOIN TAKEOFF 'BIG :STATES TAKEOFF 'SMALL :STATES TAKEOFF
" 'RED :STATES TAKEOFF 'GREEN :STATES

o

REP 'STATES
| JOIN JOIN PREP! :STATES PREP2 :STATES PREP3 :STATES

PREP1 'STATES :
TAKEQFF 'ON :STATES

EP2 'STATES
AKEOFF 'OF TAKEOFF 'LEFT TAKEOFF 'THE TAKEOFF 'TO :STATES

EPS 'STATES
TAKEOFF 'OF TAKEOFF 'RIGHT TAKEOFF 'THE TAKEOFF 'TO :STATES

SIMPNOUNPHR 'STATES
JOIN SIMPNOUNPHR! :STATES SIMPNOUNPHR2 :STATES

SIMPNOUNPHR! 'STATES
NOUN :STATES

SIMPNOUNPHR2 'STATES
DOSEMANTIC 'DOPROP SIMPNOUNPHR ADJ :STATES

UNPHR 'STATES
JOTN NOUNPHR! :STATES NOUNPHR2 :STATES

HR1 'STATES
SEMANTIC 'DOPROPREV QUALIF SIMPNOUNPHR :STATES

/
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) QUALIF 'STATES
DOSEMANTIC 'DOREL CLNOUNPHR PREP :STATES
END

TO CLNOUNPHR 'STATES B
1f JOIN CLNOUNPHR! :STATES CLNOUNPHR2 :STATES

END

TO CLNOUNPHR1 'STATES

1¢ NOUNPHR TAKEOFF 'A :STATES
END

T0 CLNOUNPHR2 'STATES
1 DOSEMANTIC 'UNIQUE NOUNPHR TAKEOFF 'THE 1STATES
END
TO ASSERTION 'STATES
1 JOIN ASSERTION! :STATES ASSERTIONZ :STATES
END
TO ASSERTION1 'STATES

1¢ DOSEMANTIC 'TESTEMPTY NOUNPHR TAKEQFF 'A TAKEQFF 'IS TAKEQOFF 'THERE :
$STATES
END

TO ASSERTION2 'STATES

1 DOSEMANTIC 'TESTNONEINBOTH QUALIF TAKEOFF 'IS CLNOUNPHR :STATES
END
TO QUESTION 'STATES

1§ DOSEMANTIC *ANSWEREMPTY QUALTF CLNOUNPHR TAKEOFF 'IS :STATES
END
TO SENTENCE 'STATES

16 JOIN ASSERTION :STATES QUESTION :STATES
END

To use this translater we need a main function which makes a set
containing just one state from a given list of words, applies a given
phrase function to this set of states, then prints the meaning part of
each resulting state (there should only be one unless the phrase is
m'big\.mus)

TO DO 'PHRASE 'WS
1) APPLY sPHRASE << << [] tws »> »

2¢ MAPLIST IT [PRINT F EACH]
END

For example we should get

DO 'NOUNPHR [SMALL RED BLOCK]

[a ¢] : (result)

DO 'SENTENCE [THERE IS A BIG BLOCK ON A BLOCK]
LIAR (printed by assertiont)
(result)
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‘A more flexible approach: translation to fumctions

¢ change the world by moving, or &l .‘ing,some block. We have to adjust

& conversstion with commands like [Put the red block on the big block]
ld be hard to impiciont, We can get over this by having a separate

d model and computing the meanings of words like 'on when we encounter
, using this model, The model can be changed; it can also be
splayed to give non-verbal qutput.

4 The world model can be just a list of pairs, each a block name and a
block description as follows: colour, dimension, x-coordinate,
y-coordinate. For the world we had before:=-
[[o [rRED 2 2 0]]
B |GREEN 2 5 2]]
C RED 2 5 0]]
D [GREEN 4 11 0]]]
We can write basic functions colof, dimof, xof, yof which take the
name of a block and give its colour, dimension, x=-coordinate and

y-coordinate in the current world.

Now we can program a meaning function for each word in a natural way.
Let us use the name Pxyz for the meaning function associated with the word
L]
X¥Ea

Pblock -> 1list of blocks (i.e. their names)
Pred block =>» truthvalue ;
fon bloek block -> truthvalue

and so on

to makeworld
m 'world

Hle fpem 2 2200,

if .xys=[] then type :x ond p 'notfound and quit

if :x=f T :xys then result f bf f :ixys

lookup .x (bf :xys)

finds the y corresponding to x in the list of x-y-pairs xys)
. 1h Xo xof 'b

okup :b tworld 18 £ bf bf lookup :b :world

end :

}ﬁq program in the last section is rather inflexible. Suppose we want

meanings of all the words affected: 'on, 'left, 'right, 'red, 'grewm. -



to yof 'b

Subitworld 10 £ bf BL bE Lockup :b sworld
end

3

~ (Note colof b, xof :b etc. now depend on the state of the world. We

lazily made this a global variable instead of passing it to each function

as a parameter.)

to fblock
maplist iworld 'f

end K

ST ] ' ]

j_gﬂﬂfhig b . .. .o fred :b

18 (dimof :b)>2 18 (colof °b)m'r&d " *

end end {ng

to small 'b t_oﬁreen b
(dimof :b)<3 ~ ¢ (colof :b)=' 'green

end " 2T i uﬁgﬂ

o f 'b1 'b2

18 if not((yof :b1)=(yof :b2):(dimof :b2) % T@g result false

26 if either(fleft tb1 :b2)(fright :b1 :b2) then result false -

3;25 result true 5

end : 3 e

mflaft 'bl1 'b2 _ SURARE e RS
(xof :b1)+(dimof :b1) <= (xof :b2) TR ot gy

end ¢ i o TR TRy PR IR 8 Inw aso

Efright T o inmeeil yoles @l eviy Baw soold # °
left .b2 :bl A el OV S SN

end . N

to meaningof 'w
1% if :w='block then result '#bl ock
20 if if :w="big then result "Phig
etc.
end
Now we have to rewrite DOPROP and DOREL to cope with a function name as

first argument instead of & list., But wait, how do we handle qualif?
qualif->prep clnounphr

Its meaning is a property of blocks but we cannot easily produce a
LOGO function to represent this property. We will just have to use &

list as we did before, sco DOPROP must accept ligs as well as function names.

doprop(function-name or set-of-blocks) set-of-blocks->aet-of-blocks

dorel function-name set—of—blccka-mw-of-blooks

to doprop ‘prop 'ys ?
Hif if listqg :prop then result olddoprop :prop 'ys
28 if if apply :pro (r tys) then result fput (f :ys) (doprnp tprop (bf :ys))
3 do rop :prop (bf :ys
end Fsuhset of ys which have property)
(olddoprop ig doprop of last section)
o/
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ixs) trel :ys) (filter (bf :xs) :rel :ys)
in xs which are related to some y in ys)
er! 'x 'rel 'ys

emptyq :ys then result []

Lf apply :rel :x (f :ys) then result <K:x>>

1ter! :x :rel (bf :ys

(4<:x>> if x related to some ¥y in ys, else emptyliat)

these redefinitions our program should work as before but more

I.
B
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;11 our sentences about blocks have referred to a single state of
d, the present one. Let us try to extend our system to discuss the
.ghring the blocks world a historv This brings up the important idea
erpreting a phrase in a context, in our case a time context. Other
s would be place ('come here') or speaker ('I killed Cock Robin'). ~

Let us simply take 'Monday 'Tuesday ... as the times, and define the
3 history as a set of day-world pairs. If we use the notation X-)Y
m::'enate [x Y] for readability we have as a possible history

ONDAY->[A->[RED 2 2 0] E->[GREEN 2 5 2]
c->[RED 2 5 0] D->[GREEN 4 11 0]]
SDAY->[A-YRED 2 5 4] B->[GREEN 2 5 2]
c-{mp 2 5 0] D->[GREEN 4 11 0]]
WESDAY->[ete.

much happened between Monday and Tuesday except that the red block
fo the left of a red block was put on the smal. green block. )

;. - We also need to know what day it is today, say THURSDAY

So global variables HISTORY and TODAY describe our model (they can be
- up by a procedure MAKEHISTORY corresponding to our previous MAKEWORLD).

If we want to Jmow what the world was like on Monday
'MONDAY :HISTORY will tell us, and
P “TODAY .WISTORY gives us the news.

What sort of sentences should we have? How about:—
The block which was to the left of a red block on Monday is on a block.
On Wednesday the block which was to the left of the block which was on

g block on Monday on Tuesday was to the right of the block which was on
. hlc;c}c on Thursaday.

" Has the big block been on a small block?
_ The point is that we can't evaluate

on a big block

4 which blocks it describes until we know which day we are talkiné
S0 when we translate such a phrase we cannot pass on a list of
as the result, as we did previously.
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us pass back a description, which can be evaluated for a given
day when we have read enough to know what day it is, This description can
be a list of liste of lists ... , that is a tree stiucture, using markers
0BJ (object), PROP (property, REL (relation), UNIQUE (to handle 'the).

The tips of the tree can be the names of semantic functions #BLOCK, @RED,
ete.

The phrase [RED BLOCK ON A BIG BLOCK] would give the tree

pro
rel prop ;
on unique Pred O%J
I »slock
me\
Pbig 0]?.]‘
@olock

This would be represented by lists thus
[ProP [REL gon [un1que [ProP gBIc [0B gBrock]]]] [ProP gRED [0BJ grrock]]]

We could also allow such deseriptions to have as components lists of
blocks, which we have already evaluated, ' '

Such trees are easily constructed by functions maekeobject etec; thus

to mkobj ix 1o mkprop ipr 1x>>
19 <<'obj 1x>> 19 <L'prop ipr :x>>
end end s

similarly for mkrel and mkunique,

Now we need a function to evaluate descriptions for a given day and produce
a list of blocks. It can uze our previous fﬁnctiona DOPROP, DOREL and
UNIQUE, thus

%o eval 'descrip 'day
hew 'world
m 'world lookup :day :history
if wordq :descrip then result :deserip (e.g. Pbig)
if 'obj=f :avscrip then result apply second :descrip
if 'prop=f tdescrip then result doprop
eval second :deserip :day)
eval third :descrip =day§
if 'rel=f :descrip then result dorel
eval second :descrip :day)
eval third tdescrip :da;g

it/




eval second :deserip :day)

(i.2. set of blocks, aiready evaluated)

second = f bf, third =1 bf bf)

and dorel which make reference to tworld will have the right

to work in, since it is set up as a local varisble and made to be the
for the day supplied; Eval just calls itself recursively to

uate subtrees (think of it as solving subproblems of evaluation).

i for b e

Here then is the semantic specification for blocks with reference to
tive., The new productions are marked with an asterisk. Coding the
ification as LOGO procedures is tedious but straightforward. Notice

2t a production which does not know what day it is makes a description;

ne which is given a day evaluates descriptions,

simpnounphr -> noun S mknbj((noun))
ipnounphr -> adj simpnounphr . mkprop<(adj)>

nphr -> simpnounphr qualif mkprop<(qualif)><(simpnounphr)>
mphr > simpnounphr <(simpnounphr)>
nphr -> simpnounphr tqualif mkprop<(tqualif) & simpnounphr)>
f -> prep clnounphr mkrel<(prep)><(c.inounphr)>
tqualif -> 'which 'was qualif 'on  eval<(qualif)><(day)>
'day

=> 'a nounphpr ' <(nounphr)>
-> 'the nounphr mkunique<(nounphr)>
-> 'there 'is 'a nounphr not emptyq(eval<(nounphr)> today)

~> 'on dav 'there 'was  not emptyq (eval<(nounphr)><(day)>)
'a nounphr

=> 'is elnounphr qualif exercise
=> 'has clnounphr 'been exercise

qualif
-> assertion if <(assertion)> then p 'correct else p 'liar
s -> question ' . if <(question)> then p 'yes glse p 'no
=> 'today 'is day m 'today<, & |

Fill in the semantics of questions.

+ Hand simulate in outline the action of the eval procedure on the

~ description tree given above and day MONDAY, using the history given at
- the beginning,

) ite LOGO procedures for the new productions, using those for the 'More
flexible program' of section 5.2 as prototypes.
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 Winograd, T. (1973) 'A procedural model of lmg!u@a
understanding' in Schank and Colby: 1

_and Language. Freeman, San Francisco.. ] _
Winograd, T. (1972) 'Understanding Natural Language'. Edinburgh
University Press. A full account if you want more datlil.,)

dialogue

does the box contain?
8 PYRAMID AND THE BLUE BLOCK.
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7« is at least one of them narrower than the one which i told you to pick up?

YES, THE RED CUBE.

8., is it supported?

YES, BY THE TABLE, _

9. can the table pick up blocks?

NO, - 4 3 !

10, can & pyra.mid be supported by a block?

YES

11. can a pyramid support a pyramid?

I DON'T KNOW,

12, stack up two pyramids.

I CAN'T,

13. the blue pyramid is mine,

I UNDERSTAND.

4. i own all blocks which are not red, but i don't own anything which
supports a pyramid. " ————

I UNDERSTAND, I

15. do i own the box? : :

NO. :

16. do i own anything in the box? y !

YES, TWO THINGS: THE ELUE BLOCK AND THE BLUE PYRAMID. _

17, will you please stack up both of the red blocks and either a green cube
or a pyramid?

OK.

18. which cube is sitting on the table?

THE LARGE GREEN ONE WHICH SUPPORTS THE RED PYRAMID.

19, is there a large block behind a pyramid?

YES, THREE OF THEM: A LARGE RED ONE, A LARGE GREEN CUBE AND THE BLUE ONE,

20, put a small one onto the green cube which supports a pyramid.

OK.

21. put the littlest pyramid on tep of it.

OK.

22. how many things are on top of green cubes?

I'™M NOT SURE WHAT YOU MEAN BY "ON TOP OF" IN THE PHRASE "“ON TOP OF GREEN

CUBES"

DO YOU MEAN:

1 - DIRECTLY ON THE SURFACE

2 - ANYWHERE ON TOP OF?

2%, had you touched any pyramid before you put the green one on the
little cube?

YES/

— | — | —
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id you pick it up?

IT ON A LARGE GREEN CUBE,

did you do that? ! :

K UP THE RED CUBE, A LARGE RED BLOCK AND A LARGE GREEN CUBE,

- did you do that?

§ YOU ASKED ME TO.

¢ did you do it? yuy 5 4 -

G A LARGE RED BLOCK ON THE TABLE; THEN LETTING GO OF IT; THEN
A LARGE GREEN CUBE ON.IT; THEN LETTING GO OF THAT CUBE; THEN
THE RED CUBE ON THAT CUBE; THEN LETTING GO OF THAT CUBE.

I. how many objects did you touch while you were doing it?

OUR OF THEM, ¥

2. what did the red cube support before you started to clear-it o@:‘?
PHE GREEN PYRAMID, :

3. there were five blocks to the left of the box then. '

ONLY POUR OF THEM: THE RED CUBE, TWO LARGE GREEN CUBES AND A LARGE RED

BSUt the blue pyramid on the block in ‘the box,

#

35. is there anything which is bigger than every pyramnid but is not as wide
~ as the thing that supports it?

BS, THE BLUE BLOCK,

5. does a steeple

RY, I DON'T KNOW THE WORD "STEEPLE",

. & "steeple" is a stack which ocontains two green cubes and a pyramid.

_-=:. ERSTAND. :

8. are there any steeples now?

build one.

0. call the biggest block "superblock",



why did you drop it?

- BY "IT", I ASSUME YOU MEAN THE SUPERBLOCK,

I CAN'T EXPLAIN A NON-EXISTENT EVENT,

43. is there anything to the right of the red pyramid?
YES, FOUR THINGS: THE BOX, THE RED CUBE, THE BLUE PYRAMID AND THE BLOCK

'n. 36

NAMED SUPERBLOCK,
44, thank you.
YOU'RE WELCOME!

24

%/

b.

de

£ Bf

Our LOGO program computes a set (list) of blocks when it is unsure
which one is meant e,g. [green block] gives 1ist-{B pl.  Winograd
in his Planner system chooses one of the blocks and uses & 'back
track' facility in Plamner to go back and repeat with the next
block, We ean't do this in LOGO but computing the list seems
about as gvobd.
Winograd actually oreates some Planner program and then runs it.
We just run existing program. His Planner program looks rather
like sentences in logic. For example:

& red cube which supports a pyramid

(GOAL (IS ?X1 BLOCK))

(GOAL (COLOR-OF ?X1 RED))

GOAL (EQUIDIMENSIONAL 7X1))

GOAL (IS ?7x2 PYR&HID}}
. \GOAL (SUPPORT ?X1 ?X2))
This is more soph.iaticatad than our description trees in the final
LOGO program, A/
Even the dictionary of word meanings has the names of procedures
in 1t, (Similarly in our LOGO program MEANINGOF 'ON is &
procedure name 'BON) '
Notice the compleiity of a word like 'tie. Sentence 2 'Grasp
the pyramid' is ambiguous, but 'Grasp the red pyramid® is 0.K.
since the model world only has one red pyramid. In sentence 5
'What is the pyramid supported by?' there is no ambiguity, since
a particular pyramid has just been mentioned; here the
anh:lguity is resolved by syntactiic context not by reference to
the model. Our LOGO program could not do this unless we made
procedures like NOUNPHR store the meaning and the corresponding
input string or tree.
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ce the complexity of the syntax Winograd can handle compared
our little LOGO one. Ours with only a few kinds of phrases
was still a bit hard to keep in ona s h;ea.d._ If we simply
invented 199 more kinds of phraaaa we woul& get in a muddle,

To avoid a very big context free grammar with lots of u'bitrary :
' names of phrase classes Winograd uses 'Sysltam.ié Grammar', due to '
 Halliday (he doesn't regard the choice as erucial, just helpful).

~ There are just four basic kind of phrase i
Clause 'Ta it red?’, '.'it is on the table',

"on which he sat'

Noun group 'A big man', 'the man in a hurry', 'cars'
Preposition group 'On top of the table', 'with', 'in

the iron mask!'.

Verb group 'lives', 'will have been living',

'to be kissed'

3

~ But each of these is subdivided (into subspecies and subspecies as
a biologiat would 55_?) Tha subdivisions are characterised b;r
features, DETERHINE]ﬁ MMGJI.INE SINGULE.R, ANIH.&TE, TR&NSI'I'I‘L’E,
IME%ROG&TIVE, etc. ' So instead of a class

MASCSINGCLNOUNPHRASE (l!1

we might have NOUN GROUP with features MASCULINE, SINGULAR, CLOSED,
This makes it easy to ensure that subject and verb agree in number
without writing separate procedure rules for each case (in French
they must also agr‘apdin,gender). We can also ensure more easily
that verbs like 'loves' get ANIMATE subjects. Notice, too, that
one would expect the semantics of 'loves' to be different
‘according to whether the object is animate or not. 'John loves
‘Mary' implies that John is in love, but 'John loves ice-cream',
doesn't.

The subdivisions of CLAUSE are very complicated (see extract
from Winograd's book 'Understanding Natural Language' ps. 48,49).
Even this does not exhaust the matter because we can also make

~ distinctions based on transitivity/intranaitivity.

¢. Winograd writes his parser in a special language PROGRAMMAR, This
- is not all that different from LOGO but is specially designed for
parsing, For example we do not ‘need to mention the string S all

3 the time, For example the grammar



NP - | DETERMINER NOUN

VP => VERB/TRANSITIVE NP

VP -> VERB/INTRANSITIVE

corresponds to thell'l!;om program
(PDEFINE SENTENCE

(((PARSE NP) NIL FAIL)
((m VP) FAIL FAIL mmmxm

(PDEFINE NP
(((PARSE DETERMINER) NIL PAIL)
((PARSE NOUN) RETURN FAIL)))
(PDEFINE VP
(({PARSE VERB) NIL PAIL)
((ISQ H TRANSITIVE) NIL INTRANS)
((PARSE NP) RETURN NTIL)
- INTRANS
((ISQ H INTRANSITIVE) RETURN PATL)

In the second line above {mm NP) has two 'umttm' NIL and PAIL
after it, It uses the first if it succeeds, the second if it doasn't,
(PARSE VP) has & third direction RETURN, which is used if it succeeds and
there is not more string left,

NIL means go onto next instruction.

FATL means output a failmdmhmutﬁac‘ha%hwlmm(nhe
CHECK) , .

RETURN outputs a result, af'borat‘hnhmthcmmwthom
tree (rather like TRY).




wrote a LOGO program to accept sentences u.hout the hlool:s lrorld. and :
some primitive responses to them. But the model to which the
ces referred was put in as a collection of lists described in LOGO.
was not the result of our conversation. This might be & fair =
cesentation of a system which answers questions about a scene it sees
tbrwgh a TV camera or even about some specific body of data like airline '
~ timetables. - But often we derive our knowledge from sentences: 'Read
this passage and answer the questions below' as the school books say.
'So we need to represent an incomplete model in a way that is easy to add
‘o or change. The list representation was specific (it knew just where
everything was), not too easy to change and needed special LOGO code for

v

~ concepts like ON. An alternative to lists+procedures is facts+inference
2. Memory
- The program must store some information about the blocks wnrld, for

_ instance "The block is red"., We adopt the same method as we used in the
1..l,pened:r:l.n:: analogy problems and the making of structural deseriptions, and
for the same reasons i,e, we use symbolic descriptions,

-y We could choose say [RED BLOCK] or [I.'.‘DI:OBR BLOCK RED]. The latter
- will be most versatile, for instance if we wanted to answer the question
"What is the colour of the block?".

Typically we will want to store a large collection of such facts
~ inside the computer. As a first approximation we can imagine a list of
~ them, e.g. i
 [[conour mLock RED] [BELONGS BLOCK NE] [BIG BLOCK]
[oN BLOCK! BLOCK] seuves ]
Such a collection of facts is usually called a 'dgtabase..

How would the program use this database to answer the question "Ts
the bleck cclotraed red?'., Pirst it would have to analyse the sentence
and build up the description [COLOUR BLOCK RED]. Then it would call:

AMONGQ/
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'[COLOUR BLOCK RED] :DATABASE ITNERES

and print "yes" or "no" as the result of: this call was "trug"" or "falge" .

(should it be "no" or "do not know"?). 5

'I'he problem of building up descriptions from the Engliah input has

been the aub;]sct of our natural 1ang-uage lectu;res. s tm it enos SEN

W 2 i _ s b Sk Suu Eaats “nep
3. m;gim the Database e sviinn Ol g — P
Unfortunately the number of facts that have to be stored in most non-
trivial domains, is very large. Searching down adong list as AMONGQ =
does take & long time., It is rather as if one was searching for a book =
in the library by looking at every book. - Our solution to this problem is
similar to the library's - we index the database.  Various indexing v e
ayatdﬁ; ire.uasd_to organise' databases. ‘We have made & system available
in LOGO (available through BORROWFILE or LIBRARY as 'ECMIf1 'INFERENCE).
You can add a fact to the database with the command ASSERT . 0000
e.g. ASSERT [COLOUR BLOCK RED] e
ASSERT [BIG BLOCK]

To dacida whether a fact is present we have provided the test
funection IBQ, [

i.e. ISQ [coz.oun BLOCK RED] ' .. w olutenson

corresponds to AOBD (¢ e B

AMONGQ [COLOUR BLOCK RED] :DATABASE sy

I |

4, B orld &
Let us £ill the database with some facta about & 1little world
consisting of two blocks, both red, one big and one light (weight). We

must choose proper names for the blocks, say block! and block?., The
procedure SETUPWORLD will set this uyp for us. . ° i AUl

70 SETUPWORLD s Gy
10 CLEARDATABASE
20 ASSERT [COLOUR BLOCK1 m} 14 ad ‘ i &
30 ASSERT |[COLOUR BLOCK2 RED
40 ASSERT |BIG BLOCK1] sraigdel
50 ASSERT [LIGHT BLOCK2]
mm

5./ 3 v . Tams o TG h i brasil i . ud G
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ona are a little difficult to read so just _
scription problem we cah répresent them as & net- =
u.'a variously called semantie networks, relational

‘Suppose we ask the question "What colour is BLOCKI?", ~What do we =
t the yregrm to do? The program should look for & fact of the form:
- [0OLOUR BLOCK ??] in the database, where ?? is any argument whatever, md &
B Tt Yo silV vhatover PP Vards' cut o' be' (Lo Rl ohyeTREH)OIO0] ¢

h h.lva already met somothing in LOGO which plays a aimilar role to

' “N. My e LOGO variable e.g.' '00L., We will use the sm nntation here
d write [COLOUR BLOCK 'COL]. Originally COL will be una.as:l.gned, but

i the course of answering the question it will be assigned a VALUE,
ﬁ:l.u case RED, So we need a procedure say FINDANY, which takes [coL]
an Im BLOCK1 'COL] as arguments and returns RED as S | TEAGH]
1+ ERINT FINDANY [coL] [COLOUR BLOCK! 'cOL]

Am
'ffl i |

'Ma procedure will have to compare [cowua mom 1cm.] ngg:lnat

s in the database looking for one which matches. £

g. [COLOUR HLOCK1 RED]. Matohing [COLOUR BLOCK1 'COL] against & fact
te of checking that the first and second items of: the fact are

and BLOCK respectively and thea aaaigni:;g the third item to 'COL
MAKE 'COL 'RED), FINDANY will then return a list containing just
its result.

rly "What is coloured red?" could be tramnslated into .

v [1085] [COLOUR '0BJ RED]

st just "Wh" questions (Which ...?, What ...?, Who ...?, How ...?;
need to use variables, We might ask "Is anything red?', This
1y translates into



15Q [COLOUR '0BJ RED) ; tupgell R

which should return true if any fact in the database matches " "
[coLOUR '0BS RED] (assigning the appropriate item to '0BJ in the praceaa)

7.  Conjunctions : : fren 10 S
Suppose we ask "Is there something light and red?" or "What is light
and red?", We clearly want these to succeed if both [LIGHT '0BJ] and

[cOLOUR '0BI RED] matoh with facts in the database Mm_g_
th tem in tch

We will want both ISQ and FINDANY to take & list of descriptions as
input, They will take the first description, [LIGHT '0BJ] and compare
it with facts from the database, until they find one that matches (e.g. -
[LIGHT BLOCK2]) OBJ will be agsigned the value BLOVK2, It will not do. *
to continue the process by looking for something to match with
[COLDH_R OBJ R_ED], because OBJ may be agsigned some other value than . ¢ &
BLOCK2,  Rather the database must now be searched for something to match, .
with [COLOUR BLOCK2 RED], i.e. having found a value for OBJ, we replace all .
remaining occurrences of X by this value. We signify this to the
procedures IBQ and FINDANY by putting a quote in frorm of any OBJ which is
to be migned a vnlue. and a colon in front of any OBJ which is to be s '
replaced by ite value. i.a. we write 'S

18Q [[ucm 'oBJ][cpwUR 10BJ RED]] . _ 2
FINDANY [0BJ] [[nIgHT '0BI] [COLOUR :0BJ RED]] ;s monn] S
To sum up b . o 4 BESEL A

—‘l

'0OBJECT means OBJECT is a variable which is to be assigned s value in
the match, called an unbound variable,

10BJECT means OBJECT is & variable which is to be replaced by the =
value of 'OBJECT, called a bound variable. - ABGAJ I

CEJLECT means OBJECT is a cog.gtg that stands for itself, like ﬂlb" m”
BLOCK2 or COLOUR,

2.  Failure 5.
If ISQ and FINDANY are working properly they should fail to find an
object which is both big and light. MDY

i.e, I8Q [[BI¢ roByBCT] [LIGHT :0BJECT]]. i i
should return FALSE.  (FINDANY returns [ ]) - r boel f

1f/
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If we had written:
18Q [[B16 *oRsECT] [LICHT '0BJECT]]

‘then ISQ would have returned TRUE by assigning first BLOCK! to OBJECT then
BLOCK2 to OBJECT.

What we do with this output of FALSE when we get it depends on our
conventions about the database. . If we assume that the database has
complete knowledge of the domain and that any fact net stored is false,
then we will prinﬁ "no"™, « On the other hand, if we admit the possibility
that there may be things it does mot know, then we may either print "I do
not know" or try to show that no big things are light so that we can
print "no".

Either of these conventions can be useful in different circumstances.
We should always be clear which we intend.

9. Search

Suppose we had asked "Is anything red and light?"

1.e. 15Q [[coLovr '0Bs RED] [LIcHT :x]]

There is a good chance that the initial comparison of [coLour 'oBJ RED]
with facts in the database would have assigned BLOCK! to 'OBJ. Since
[LrET BLOCK1] is not in the database, ISQ would have returned false
unless it was able to "back up", undo its assignment of BLOCK! to 'OBJ and
» assign BLOCK2 instead. Thus ISQ and FINDANY must be prepared to search
for assignments to the variables which gimultaneously satisfy all the
descriptions. With a lot of conjunctions and a lot of variables in the
input, ISQ and FINDANY may have to do a lot of searching before they suc-

ceed (or fail). We can represent these searches by a search tree.

g [COLOUR '0BJ RED] | ¢~ goal
[11cET :0B5]
operator
[coLOUR BLOCK! RED] : [cOLOUR BLOCKZ RED]
subgoal
[ [zxemr BLOCK1]] [ [Lzcar BLOGK:Z]f/
/‘ [LIGHT BLOCK2]

failure

Success!



- nodes of the tree are goals or descriptions to be matched. The op 5T
5 or operators are facts from the database.

There may be several alternative agaignments which lead to success.
Both ISQ and FINDANY are satisfied with the first successful assignment
they find, but there are occasions when we are.intersated in all the
successful assignments. For instance, suppose we ask "Which things are
red ?'.  We would expect the answer "BLOCK! and BLOCK2". A procedure
FINDALL is provided in LOGO. Tts syntax is similar to FINDANY except
that it returns a list of all successful assignments. ;

e.g. FINDALL [THING][COLOUR 'THING RED]
returns HBLDCKﬂ [BLOGKE]]

N.B. not [BLOGK1 BLOGK?] for a reason which will soon be clear.

G Many Variables

Some questions may involve using several variables. For instance
suppose we ask "What colour is the big object?™. We would probably
translate this into

FINaNY [con] [[B16¢ '0Bs] [COLOUR :0B7 'cor]]
which would return [HED]. i
In the process BLOCK! would be assigned to OBJ and RED to COL.

Only the value of COL is returned as the result of FINDANY, because
[coL] was given as its first input. If we wanted the value of OBJ as
well, for instance in answer to the question "What is the big nbjeof and
what colour is it?", we would write

FINDANY [0BJ coL] [[BIe '08r] [coLOUR :0BT 'con])
The result would be [BLOCK' RED].

This explains why we have been using lists for the first input and
the output of FINDANY and FINDALL.

FINDALL can also find the values of several variables. Consider
the question "What are all the objects and their colours?. This

translates into
FINDALL [0Bs con] [[coLour '0Bs 'con]]

The/
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e result of FINDALL is a list of lists.

te FINDANY in terms of ISQ. (i.e. assume ISQ is
FINDANY is not.)

A
B 5

~ Represent the above picture as a procedure which makes a series of
assertions in a database.

Bele TO ARCH1
10 CLEARDATABASE
20 ASSERT [ONEPARTIS GROUP A]
~ ete.
~ Exercise 1.3  Translate the following questions into procedure calls

which could access the database set up by ARCHI.

Is A lying?

What is lying?

What is to the left of C?

What is to the right of B?

What things sre supporting A?

What is the arch constructed from?
What are the supports of the arch?
How many things are supporting A?
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Forward I kward deduction

So far the knowledge in our database has been simple facts or
assertions,  Not all knowledge is of this type. Some knowledge is in
the form of laws like "All big things are heavy" (people often use very,
rough generalisations), With this law and the fact that block! is big
we should be able to answer the question "Is block! heavy?" in the
affirmative. Perhaps the simplest way to ensure this would be to have
a procedure which monitored all new additions to the database. When-
ever a fact of the form [BIG 1xJ waalgssarted this procedure wéuld
deduce [EEAFY II] and add thig to the datgbase; We can add such a
procedure to our world model usiné th§ procedure ASSERT, Let us edit the
procedure SETUPWORLD and add line ' '

15 ASSERT [IMPLIES [BI¢ 'x] [HEAVY :Xx]]

You should read this law "The fact that X is big implies the fact
that X is heavy". The first description [BIG 'X] is called the
antecedent and the second [HEAVY :X] is called thé consequent. ~ The
procedure works by matching the antecedent uéhinst all incoming assertions.
If a match succeeds the procedure asserts the consequent, replacing any
variables with their assigned values, Such a proce&ureJis sometimes
called an "Antecedent Theorem", an "If asserted method" or a "Demen" and
the kind of deduction it does is variously called "Forwards deduction",
"Forwards chaining", "Bottom up reasoning" or "Hypotheses driven
deduction™,

We should be sure to add such "demons" before asserting any facts,
because it will only deduce consequences of facts asserted after it
itself has been asserted. Thus when line 40, which is

40 ASSERT [BIG BLOCK1]

is executed, our demon will set to work and ASSERT [HEAVY BLOCK1].
(If line 40 were line 13, our demon would do nothing.)

Now if we ask
1SQ [HEAVY BLOCK1]

we will ge the result TRUE.



QAI.9

2. h P ction

Unfortunately it is not always convenient to draw all possible
conclusions from the things we assert, Typically an already large data-
base will become cluttered with facts we may never need to know, = Imagine,
for instance, what would happen to our database if every time we asserted
[HUMAN X], we deduced [HAS X HEART], [HAS X HEAD], [HAS X HAIR], [HAS X
LUNG] ete. Any new assertion would lead to an explosion of deductions,
the database would become so full that we would find it increasingly hard
to retrieve facts.

The situation is worse because scme demons lead to a call of them-
selves. Consider "Every human has a human mother", If we asserted
[HUMAN JANE1] we would deduce and assert [MOTHER JANE2 MUM1] and
[ HUMAN MUM1] where MUM1 was & new constant. This would lead to & new
deduction [HUMAN MUM2] and so ad infinitum. Clearly some laws need to
be kept for use only when needed.

i Functions

In the previous exsmple we cheated a bit, Each application of the
law "Bvery human has a human mother", introduces a new constant, (e.g.
MUM1, MUM2, .... etc.). But we have not yet discussed a mechanism for
introducing new constanta. We now correct this omission.

A first approximation might be to include & new constant in the
statement of the laws

e.g. [IMPLIES [HUMAN 'x] [HUMAN MUM]]
[1MpLIES [HUMAN 'Xx] [MOTHER :X MUM]]

This would work for the first a.p'plication of the law to say
[HUMAN JANE] producing [HUMAN MUM] and [MOTHER JANE MUM], but the second
application (to [HUMAN MUM]) would produce [HUMAN MUM] and [MOTHER MUM
I-IUH] which would be silly. Clearly the new constant should depend on
the particular value of X at the time the law is called. The device we
introduce to deal with this problem is to represent the new constant by
something like an explicit LOGO procedure call using the fumction name
MUMOF and taking :X as argument, So MUM1 will be represented by

[MUMOF JANE]

and MUM2 by
[mumor [MuMOF JANE]]
The/
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The law "Every human has a human mother can now be represented as

[xwpriEs [moman 'x] [HomaN [MuMOF :x]]]

together with
[mpries [Human 'x] [MoraEr [momor :x]]]

]

Exercise Represent the law "Every human has a head".

4, Backwards Deduction

What we need is a law which will omly be invokéd-whan it is needed

to answer some question.
e.g. when we ask ISQ [HEAVY BLOCK1] it changes the question to

15Q [BIG BLOCK1] which returns true. But [HEAVY BLOCK1] is
never asserted. f

In LOGO we store such a law by typing
ASSERT [TornFER [HEAVY 'X] [BIG :x]]
Read this law "To infer that X is heavy, deduce that X is big",

18Q [HEAVY BLOCK1] first checks to see if [HEAVY BLOCK1] is in the
datebase. If not it then checks in a database of laws to see if any
are relevant. This means matching the consequent of the law against the
current goal (e.g. [HEAVY 'X] against [HEAVY BLOCK1])s  Then the
current goal is replaced by the antecedent of the law (with any assigned
variables replaced by their values), e.g. ISQ [HEAVY BLOGKT] is replaced
by 18Q [BIG BLOCK1],

Such laws are variously called "Consequent theorems" of "If needed
methods", and the kind of deductions they do are called "Backwards
deduction", "Backwards chaining", "Top down reasoning" or "goal directed
deduction".

We will want to allow the antecedent of our "TOINFER" laws to

consist of several descriptions
e.g. [TOINFER [METAL 'x] [EEAVY :X] [COLOUR :X GREY]]

This will cause no problems since ISQ etc. can handle conjunctions
of goals.

5. Search Again

Just as it was possible to make the wrong assignments to variables
~and have to back up, it is possible fo apply the wrong law and have to
‘back up. Suppose we edit SETUPWORLD to have two TOINFER laws corres—

ponding to




10 CLEARDATABASE : Bl
13 ASSERT [TOINFER {mvr 'm].{mu 1 THING | ]
15 ASSERT |TOINFER [HEAVY 'THING] [MBTAL :THING]]
20 ASSERT [COLOUR BLOCK! RED '
30 ASSERT [COLOUR BLOCK2 RED
40 ASSERT [BIG BLOCK1]
50 ASSERT [LIGHT BLOCK2]
END >

If we ask

1sQ [HEAVY BLOCGK1]

in our current INFERENCE system  the first law "all metal things are heavy"
will be used first and it will eall ISQ [METAL BLOCK!]. This will fail,

so if the original goal is not to fail, ISQ must be prepared to back up
end try the second law. : ;

We can represent the search by a tree

1. e.'

[T o]

[TOINFER [HEAVY 'THING] [mu T 1] Nrorwrer [HEAVY 'THING] [BIG :THING]]

[weran mwock1]]

i

failure

[BIG¢ BLOCK1]

T

The arcs can now represent laws or facts from the database.

Even these TOINFER laws do not prevent explosions. For instance,
suppose we added the law: )

[rorrFEr [on 'x 'x] [oN sx 'fr]"['bu ur 1z]]

corresponding to that if one block is on top of another and a third is
on top of that, then the top block is on top of the bottom block.

Suppose we now ask
1sq [oN BLOCK! BLOCK2]

Since this is not in the database the law will be invoked and

150/

shokl

.
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This will call
15Q [[on BLockt 'y1] [ow :¥1 'Y] [oN :Y BLOCK2]]

and so, ad infinitum,

6. Predicate Calculus

Those of you familiar with predicate caleculus will find all this
rather familiar., In fact this is a procedural version of a subset of
predicate calculus. For that reason you will sometimes see programs
like this referred to as "Inference systems" or "Theorem provers".

We can get the program to perform most of the logical deductions
that you find in the literature, For instance consider

A1l Humans are Fallible
Turing is human
Socrates is human

Socrates is Greek
Who is & fallible Greek?

translate this into

ASSERT [TOINFER [FALLIBLE 'X] [HUMAN :x]]
ASSERT [HUMAN TURING]

ASSERT [HUMAN SOCRATES]

ASSERT [GREEK SOCRATES]

FINDANY [x] [[PALLIBLE 'x] [GREEK :X]]

to get [SOCRATES].

Exercises
You try this with:

2.1 All men are mortal
S te m

Is Socrates mortal?

We have met a very limited class of entities in this simple
descriptive language, i.e. just:

Physical/
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cal objects like block!, block2
Properties like red .
Relations between them like colour, big

Assertions like [COLOUR BLOCK! RED]

Laws like [IMPLIES [BIG 'x] [mmaAvy :x]] =~ = .

To conduct reasonable conversation we will have to represent:
places; times; events; actions; substances, etc.

2.2 (a) Using the LOGO inference system translate each of the following
sentences into & procedure call corresponding to its meaning:

The Pope is good
John Wayne is good

YT .

John Wayne is courageous
Anyone who is good and courageous is a hero

Who is a hero?

(b) Suppose the translations of the sentences above the line were
used to set up a database and the translation of the sentence
below the line were used to interrogate that database.  Draw
the search tree of tat interrogation,

2,3 If X is a parent of Y and Z is a sister of X then Z is an aunt of Y.
If X is a parent of Y and X is an aunt of Z then Y is a cousin of Z,

A mother or a father is a parent
Mary is the mother of John

Fred is the father of Jane

Mary is the sister of Fred

Dai the wif f

Whe is the cousin of Jane?

Draw the search tree of the above,
2.4 VWhat additional laws do you need to answer "Who is the aunt of John?"

2.5

Using the LOGO INFERENCE system:

(a)/

1

S FECS .
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Give a partial symbolic description of the above drawing of
a face sufficient to answer "yes" to the following questions,
by direct database lookup:

Is the mouth in the lower portion of the face?
Is the left eye in the upper portion of the face?
Is the nose in the centre of the face?

In addition represent the laws that:

Anything in the centre of the face is also in the middle portion.

Anything in the middle portion of something is always above
anything in the lower portion;

Anything in the upper portion of something is always above any-
thing in the middle portion.

Represent the question:

Is the nose above the mouth?
Draw the complete search tree of its interrogation of the database.

In addition represent the law:

To infer that x is above y show that x is above z and z is above Vs
and the question:

Is the mouth above the nose?

Draw some of the search tree of this interrogation. What
problem arises? How might it be overcome?

Does your sclution involve changing the LOGO INFERENCE system?

Recommended Reading

Raphael, B. 'A Computer Program which “Wnderstands"', AFIPS Conference
Eroceedings Tol, 26, Part 1, 1964, pp. 577-99.
Sussman, G.J., Winograd, T., Charniak, E, "Micro Planner Reference

Manual", MIT AT Memo 2034, 1972. (Read lightly, not attempting to
learn Microplanner,)
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SQuestion answering and inference - 2: Appendix
Summary of the LOGO INFERENCE package

1. Access
The inference system consists of a number of procedures available as

a file in NEWLOGO. It provides facilities for making a database,
retrieving from it and doing forward and backward inference.

2. Patterns

A pattern is a list of pattern elements or patterns.
A pattern element is either

(1) A constant, i.e. & word or number
(2) A quoted variable, i.e. a quote followed by a variable name
(3) A colon variable, i.e. a colon followed by a variable name,

Examples of patterns:- [LIKES JOE FOOD]
[LIKES JOE 'xX]
[NEAR 'XX :CURRENT]
[L1XES J0E [DAUGHTEROF :xx]]
[[r1xES JOE 'xx] [AVATLABLE :xx]]

A pattern is gimple if its first is a pattern element, otherwise it is
compound. Compound patterns are understood as conjunctions.
Example: all but the last pattern above are simple,

3« Procedures :
Notation: Pat-pattern, T-truthvalue, L-list, Ll-list of lists,
V1-1list of variables.

CLEARDATABASE = Clears the database.

ASSERT simple-pat - Adds pattern to database,
any colon variables take
their current values.

Example - ASSERT [COLOUR - RED :0BJ]

ISQ Pat => T - Tests whether pattern
matches one in database,
A quoted variable is
asgigned a value by the
mateching if possible. Colon
variables take their current
values/



values whether assigned by
MAKE or by matching. New

is finished. For a cc-mpnund
pattern each component is :
matuhaed in auccesaion, depth
first.

Example - ISQ [[BIG 'xx] tﬁih :ix]]

FINDANY V1 Pat -> L ’ g = The pattern is matched against

the database; result is the
list of subsequent values of

the variables named in V1.

Example - FINDANY [xx] [hrq"xx]'

FINDALL V1 Pat -> L1 - Like FINDANY, but finds all

4.

possible ways of matching the
_pattern with the database;
result is the list of all
possible lists of subsequent
values df the variasbles named
S T

Rules
ASSERT can also be used with a rule as argument,

Rules use antecedents and conaequentu, which are simpla pa.tterns.
There are two kinds of rules:-

[]I‘IPI.IES antecedent oonnaquant]
- subsequently, when any pattern which matches the
antecedent is asserted the consequent ishalso .
asserted (with the then current values of the
;rariablaa. including assignments to variable
while matching the antecedent).

Example - ASSERT [IMPLIES [sTUupENT 'X] [INDUSTRIOUS :X]]

[TOINFER consequent antecedent! antecedent? ...]

- whenever the system tries to match some pattern
of the same form as the consequent it can
instead try to match the pattern(s) defined by
the antecedent(s) (all of them conjunctively).

Example/

values are ava.llable after ISQ
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mple - ASSERT [TOINPER [MAN 'x] [MALE :x] [EuMAW :x]]
tions 1. No colon variables in the consequent of a TOINFER mule,

2. Variables oceurring in the rules must not clash with any
variables that appear in non-rule patterns. Adopt a
convention like X,Y,2 only for rule-variables.

Negation

In a compound pattern any component after the first may be negated by
= [wor [...]].

- Example 15Q [[RED 'x] [wor [smarr :x]7].

5. U the system

(a) Access the system from NEWLOGO* by
LIBRARY 'ECMIZ1 *INFERENCE
or BORROWFILE 'ECMIf! 'INFERENCE (1ike GETFILE)

(b) Do CLEARDATABASE to initialise the system first of all.

(e) If variable THINKALOUD is TRUE (default value) the system prints
a commentarv on its search. Make false to prevent this.

(d) Like other variables, variables in patterns are best declared NEW
in procedures which use them.

(8) The svstem is extremely sensitive to the order in which it tries
TOINFER-rules. Rules asserted first are tried last, so assert

the simplest rules last. Search is depth first, so beware of
infinite recursion.

get NEWLOGO in EMAS initially

and: APPENDLIB (ECMI@S. NEWLOGLB)

and: COPYLOGO (to make your AT2LOGO files available)
safter call it with command: NEWLOGO,
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STRUCTURAL DESCRIPTIONS

TASK: How could we get a sensible description of figure A?

R5

i || -7
R2> _I R3* |,|_R4+ﬂ [| -re

Figgre A

We would prefer "a chair near a table" to

"5 yertical rectangles and 2 horizontal rectangles™.

Let us look again at the process of achieving a symbolic description of

a picture we went through in the analogy lectures.

a) We need to achieve uniformity of predicates.
If several descriptions are possible, e.g.
"a triangle inside a square"
"a square surrounding a triangle"
we arbitrarily chose a predicate, say, "inside" and then stick

to it, to enable rigorous comparison between descriptions,

b) To avoid ambiguity, we express the elements involved in the
relationship in a fixed order. [inside triangle squarel must

be distinguished systematically from [inside square trianglel.
c) We ignore superfluous words such as maich™, sl friv.

d) In cases where we have two objects of the same shape, we

distinguish them in the obvious way:-
trianglel , trianglel

e) We list the objects in the figure, explicitly, and our descriptions

take the form

<set of objects in figure> <set of relationmships in figure>




_consider our task figure
For cnnyeﬁienﬁe'ﬁnaabbreviate "rectangle" to "R",

The set of objects in the figure is [R1 R2 R3 R4 R5 R6é R71.

We could describe the spatial relationship between Rl and R2 using "above",
"below", "under" or "on". "On" includes the idea of touching and suits our

purposes best., Thus:-
[on R R2] [on Rl R3] [on RS R4] [on RS R6] [on R7 RS]

We capture the different orientations thus:-
[standing R2] [standing R3] [standing R4] [standing R6] [standing R7]
[lying R1] [lying R5]

Rather a lot of expressions are accumulating and we have not yet expressed half
the things we need to say about the picture. We need ways of making it easier
to see what is going on. Notice the threefold mention of Rl = three facts

about Rl have been asserted. We have a way of grouping references to the same

object by creating a node to represent the object and using directed arrows to
represent the relationships it has with other objects.

o

O

The third fact about Rl [lying R1] tells us about a property of Rl rather than
how it is related to other objects. We treat properties as one-place relation=
ships, in that the descriptions of the property is attached to an arc hanging £
the node

lying (E’

on on

standin standing




v. 3

There are two interesting consequences of this representatiomn.

- The objects from two clusters by virtue of their relations, Viz:—
group 1 [Rl RZ R3]
group 2 [R4 R5 R6 R7]

2. We can readily see patterns of relations

"a lying object on 2 standing objects" is a pattern which
oceurs in each cluster, and suggests a derived predicate:=
"is supported by"

How does the first point, the grouping of objects, help us in our task? Let
us proceed with the business of adding relatioms to our network e.g. R2 is to
the left of R3; R6 is to the right of R4. We choose, arbitrarily, "leftof"

as the canonical predicate and insert.

leftof
J T leftof
3 —

leftof
leftof <
leftof

leftof




leftof 1

\
[
\ i :
L3
\
@L_) J i ; 1
v J 1 I
“ leftof A
\ - o v o I‘
\ v i =
\\ -

i e
[leftof groupl group 2] [1eftof R2 R3] (leftof R4 R6T

But we need a way to refer to \ } and what do we mean by this

‘h.p' 3 .
dotted circle anyway? We make explicif the relationship "one-part-is"

leftof

one-paft-is

leftof @

MORE ABOUT RELATIONS

1. Consider again the problem of choosing predicates.
[inside triangle rectangle] has mo intrinsic superiority over
[outside rectangle trianglel. We could introduce explicitly the

fact that the twe are equivalent by using two arrows each time the
relationship occurred in the network:-



2,

Alternatively, and more economically, we can provide this information once

and for all in the form of a rule about inverses.

Inverse rule: if objl inside obj2 then obj2 outside objl. More generally,
if one relation RELl is the inverse of another relation REL2 then if
[ReL1 0BJ1 0BJ2] then [REL2 OBJ2 OBJ1J.

Some relations like next to or near are symmetrical and can be represented

by a two-way arrow

@ ¢ near ;

which would be equivalent to asserting both [near A B] & [near B A].

How about the relationship between R7 and R6 in the task picture?
We have fon R7 R5] and [on R5 R6], and "on" is a particular kind of

relation which is transitive. We could have a transitive rule of the

form:-

If objectl on object2, and object2 on object3, then objectl on object3.

Again, more generally,

if a relation REL1 is transitive then
if [REL1 OBJ1 OBJ2] and [REL1 OBJ2 OBJ3] then [REL1 OBJ1 OBJ31.

However, we cannot pursue this indefinitely for some relations, otherwise
we could prove, say, that everything is near everything else. '"'Being
near to' seems to include the idea of "distance away from" relative to

some activity i.e. near enough to be affected by,

In network terms, we have traversed two directed arrows in order to

get [on R7 R6]; in both cases, the directed arrow had the label "on".
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In the same way, two successive arrows labelled "father—of" could give
us "grandfather—of". We need not restrict ourselves to successive
arrows having the same label, Thus "aunt-of" could be "mother—of"

followed by "sister—of'.

Problems arise in assigning predicates.

a) Recall "is-supported-by" in the task figure, derived from

grouping "one lying rectangle on two standing rectangles”.

But what about 1

b) Consider "leftof" and "above" in the following:=

, s T es |
i o [ 1 C 1
leftof above above & leftof ?

¢) The cube is rightof the arch in the picture, but in the real world

scene which this represents, the cube is on the leftof the archway.

b



This is a matter of frame of reference in terms of which the relations
are defined. The cube is to the left of the archway as seen from the
point of view of someone in the right-hand part of our picture.

POINT OF VIEW
Consider the task figure again.

= All the relations used in the description make an assumption about the

: figure VIZ that we are looking at a side view of some scene and that for
example points in the top part of the picture correspond to higher points
in the scene than do those in the lower part of the picture.

Now let us assume that the picture represents an aerial view of some scene.
- What happens to our description?

westof

one—part-is

one=fart=-is

t-is  ome—parttis
one—g

northog
abu¥s d%

@ westof @

parallel to

parallel to



tice (a) We have some symmetric relatioms and the same general

some transitive relations rules already developed

some inverse relations for these will hold.

(b) A crucially important set of remarks

How difficult was it for you to see the picture as”au aerial 1
view? The familiar arrangement of parts triggers concepts we
already have i.e. evokes the labels "table" and "chair" for
groupl and group? respectively; i.e. imposes the viewpoint.
We see the 3 rectangles Rl, R2 and R3 as a table. Parts take
their names from the wholes they are seen to belong to; e.g8.
Rl becomes "table-top". No such ready interpretation emerges

for an aerial view.
We find that a global decision such as viewpoint assignment

can determine which predicates will be included in the description.
An example of this is shown in the Heider-Simmel film.

Sometimes there are two equally strong possible imterpretations
- the so called ambi;uous figures which abound in the psychological
literature have just this property e.g. the Rubin figure which can
be seen sometimes as a vase and sometimes as two facés; or Boring's

figure which can be seen as a young girl or an old woman.

This is the kind of consideration we will be going into in Thaw

depth in the perception lectures to come.



Rubin figure .

SN, ' N
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S .ts \\
SN \ Boring figure
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Structural descriptions (2)

We try out our method of forming structural descriptions on some
standard displays used by Gestalt psychologists.

Example a. Consider this display of 5 vertical lines.

/1 2 3 L s

Our description might look like thisi-
near near . =
ine 1 6@ ﬁ‘-ma,?) J.\m_e_jhj 1ines5./

We could put in "parallel-to". But since each line is parallel to every
other line, such a tag would only load up our description without providing

any evidence for grouping. Similarly properties like "vertical" and "straight"
would occur attached to every node and would not affect our bias to form

groups on the basis of a shared relation "near" as follows:-

group 1 : line 2 and line 3 (abbreviate L2 & L3)
group 2 : Lb and LS
group 3 ¢ Ll

Exarple b, Now we add b4 lines to our display to get:i=

6 o

The new feature is that certain lines are connected.




Again three groups fall out quite naturally om the basis of closed rings of
links, thus:i=-

near near

Notice how lines 2 and 3 have changed allegiance, and now belong to different

groups. The nodes in groups 1 & 2 formed closed rings. To keep the skeleton
of our description clear, we will not follow through the details of adding
features like "parallel-to" and "at-right-angles-to", necessary to provide the

basis for identifxigg groups 1 and 2 as rectangles.

Z} 4
1 2 3 4 5
[Z: ::! iii ;j]

Instead we look at

Exagle o

This yields the following:i-

connects

connects




‘At first blush, we might seem to be back to situation (a) with the same three
- groups, However by noticing the collinearity of the hanging lines 6 & 8, 7 & 9,
10 & 12, 11 & 13, we form a conceptual "closure" of the shape thusi=

collinear

Now we are in situation (b).  Indeed, if we had a description of the rectangles
in (b) stored away, we could imagine that finding the hook "[: s (L6=L1=L7) could
invoke the stored description or model of a rectangle i.e. trigger the expectation
of a rectangle, and lead to an active search for the rest of the rectangle. More

of this in the perception lectures.

Notice, however, that there is a bug in our recipe.

Since we have granted our system the ability to notice collinearity in situation (c),
we should have noticed the collinear lines in situation (b). And when we allow
this, we find that because this relation involves only some nodes, it seriously

affects our grouping.

The description of situation (b) should have been

connects

collinear




Hew:we can no longer claim that two groups fall out naturally. There

is more than one way of extracting groups from this network, We need to have
a way of ordering our grouping criteria. For example, 1f there are two
possible closed rings to which any one node can belong, then choose the ring
formed by relations of the same sort, or as nearly the same sort as possible.

So in our example, 6~1=7-2 are linked by a ring of "connects" and is
preferred as a group to 6=2=3=8, which are linked by a diverse collection of

relations.

Now we have to decide what to do about "collinear".

One of the reasoms for grouping is to form entities which at a higher
level can themselves behave as Erimitiva elements in a relation

e.g. groupl near group2

However we would still want to retain the ability to relate part of one

group to either the whole of another group, or to part of another group.

e.g. Consider again the task figure in the previous handout. (P V.1) We observe that
the bottom lines of the two rectangles forming the "chair" are collinear, and

that the same goes for the bottem lines of the rectangles forming the "table".
Furthermore all these lines are collinear i.e. part of part of the "chair"

group is collinear with part of part of the "table" group, and we can, and

probably do, use this evidence of a support plane, viz the "floor".,

Example d. What do you see in this display?

&y

At this point, I start seeing the letter E in several places. Can we
get this description with the rules we have been using so far? Try this

example yourselves.

Susgestion.

h—-l'
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Suggestion. There is a much deeper bug in our method, which was hinted at
by the remark on P12 which referred to the possibility that hooks of the form
n "

E might invoke the STORED DESCRIPTION or MODEL of a rectangle.

There is more to structuring a picture than is given directly in the
picture.

Example e. An ambiguous figure - "belonging~to"

We now look at the ambiguous figure om P15,

This can be seen either as a cross of 4 ribbed pie slices on a background
disc of concentric circles, a target; or as a cross of striped pie slices
on a background disc of radiating spikes. In the former case, the arcs are
geen as the visible parts of complete circles; in the latter they are seen

as true arcs.
We form a description which reflects the fact that

1. The areas cluster into two groups by virtue of their surface markings.

2. In each group the members are identical to one another.

We describe a typical member and note the members.

a

=
19 2
&)

g i
{:
"

&

ypical member

ribﬁ;ﬂf,a—"=,'

abupt-R

ano ther
member

2,
J

abuis=L

snother
member

Py




e. An_ambiguous figure.

Pl = 8 are pie=slices,
ribbed or
striped ? areas

L1=8 are the shared lines
separating these areas
Rl and R2 are arcs
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But what are we to do with lines 1-87

Consider L1 and the areas directly separated by it VIZ P1 or P2.
We could see L1 as belonging either to P1l, or to P2, or to beth, Let

us follow through the consequences of each choice.

(1) Suppose we choose to assign L2 as the boundary of P1. This leads us
to expect L8 to form the other boundary of Pl which then achieves the status
of a closed figure.

RULE: Try to group lines into closed figure.
Thus, P2 and P8 become blckgroénd. If Pl is to remain a typical member of
our group 1, then we are led to postulate boundaries for all the other members
of the group in the same way; the group now consists of 4 pie slicee joined
at the centre. Group 2 consists of 4 bits of background and we are likely
to see them as one area patchily occluded by the cross of closed figures by
noticing that the arcs in these areas form matching sets of T~juncticns with

the figure boundaries:-

Again we form "conceptual" closures as we did in the earlier rectangie

display and see the arcs as passing under the figure to complete the circles.

Our description now looks like this:-

in=front-of

L g

typical
member

target=faced
background

linked=-at=-centre

RetibeFg)"



(2) Suppose we choose to assign L1 to P2,

Applying our closure rule, we get L2 belonging to P2 as well, to form
a closed figure. The consequence of this spreads through the display,
this time turning all group 2 areas into closed figures joined at the centre
to form a cross. Now we hallucinate radial spikes behind the figure

The description follows the previous patterm.

(3) If we try to assign L1 to both Pl and P2, we run into difficulties.
What is involved is conceptually splitting each line, and inhibiting the
T-junction effect, in order to see a flat surface of alternately ribbed and

striped figures, We just don't seem to do this very readily.

More examples of how context influences the structural descriptions

being constructed are given in the figures oa P V.19.

In Summary 3

We have explored, in a tentative way, some of the methods we as human
obgervers use to group lines into shapes into coherent structures. Grouping

imposes an organisation on the figure, structures it into a meaningful whole

Points to notice

1. Small local changes in the display can produce large global effects
e.g. by influencing the choice of grouping rule. We saw how lines changed
their allegiance i.e. what they are seen as belonging to, by virtue of changes

elsewhere in the picture.

2. Grouping elements into larger units is part of an "effort after meaning'

in which stored experience plays an important rele.

3. Ve can systematically debug the rules we think we are using by spelling then
out and then trying them out on a new display. It is very likely that you can
find more bugs in the above account. That is good. It ig a virtue of the

methodology we are using to gradually refine our recipes by exposing them to
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new cases. The best way to find bugs which elude the kind of hand-testing
we have been doing is to program up the rules and run the program on a set
of examples.

ol

Choosing good examples is an important part of the story,

We take this up next time,



Figure 1

TASK:

(After K. Gpttgc%*}dt (1926);

Sy RS

Reproduced Word

fist1

Curlaing in
-a window

= Botille
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: O’O -+ Eyeglasses

4= Soven

= Ship'swheel

——Hotir-glass
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Figure 2

Try and find Fig (a) in Fig (b) in each case.

ia Experiments in Visual Perception.
Ed M,D, Vernon. Penguin)

‘Word Reproduced
list2 fipure
" Diamond in E 3
arectangle
Stirrup —= f.'-’l

Letter C .y @
o

Fig. 6. Ambigucus fizurcs. (After L. Carmichael ¢f al. in Journ. of

Experimental Psyckology, vol. 15, p. 8o)

Subjects were shown the series of stimulus figures shown in the central

column, each of which could represent two things.
shown, names from list 1 were read cut to one group;

As each fipure was
alternative

names for each figure from list 2 were read out to another group.
The two groups were then asked to draw what they had seen as accurately

as possible.
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STRUCTURAL DESCRIPTION 3

1. 20 drawings of planar solids: first visit.

The taree faces of a cube meet at a trihedral vertex. In a 2D drawing of

a cube, the three edges forming such a vertex are represented by the junction
of lines, forming eitheri-

a, a FORK junction: Jy

b. an ARROW junetion: J3 J4 J5

(one of three angles at junction > 180°)

or c¢. an ELL junctiont J1 J3 J5

The number of visible faces at each vertex decides what the junction will
look liket:

3 visible faces =) a FORK junction in the picture.
2 visible faces =) an ARROW junction in the picture.
1 visible face =>an ELL junction in the picture.

Going the other way, given a 2D representation of a collection of planar
solids, we can decide which regions belong to which selids, using RULES e.g.

a. The FORK rule links all three regions surrounding a junction.



b. The ARROW rule links two of the regioms contributing to the junction.

For example:=

To segment an arch into its component parts, plant links wherever

K1 S

R2 R3

]
]

R4 |Rs Re | Ry

aq P

an arrow or a fork occurs. The regions can be grouped on the basis of these

links into 3 groups:-

A segmentation process using rules like these forms the basis of a computer
program written by Adolpho Guzman at M.I.T in 1968, This will be discussed

in detail later in the course.

2., LEARNING STRUCTURAL DESCRIPTIONS

We explore the problem of learning, using and extending the ideas of
building and manipulating descriptions, which we have developed so far. We
will follow through a process of description refinement in response to a judiciously
selected training sequence. This is a simple minded version of a well know program 1
written by Pat Winston at M.I.T. and figure 1 A-D shows the sequence of exhibits
he used to "teach" the concept of an ARCH.
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ARCH

FIGURE 1-A

ARCH

FIGURE 1-C

NEAR MISS

FIGURE 1-B

NEAR MISS

P>

FIGURE 1-D

) SREEE S EERE S




1, Preliminary account

The world consists of children's building blocks, brick-=shaped or

wedge-shaped, out of which the arches (and other simple structures) are built.

The idea is to set up an INITIAL DESCRIPTION of the first, good example
of the concept, and then to gradually debug this description in the light of
subsequent exhibits. The point of the exercise is to show the value of

exhibi ting something which is nearly an example but just fails to be so because

of the presence or absence of only a few features = the NEAR-MISS.

The process rests on comparing descriptions, a technique we used in the
analogy problems. We build a description, for example, of the NEAR MISS, and
compare it to the one we already have of a good example. The difference
between the two tells us precisely why this new thing didn't make it = it
highlights which of the features in our first (model) description, are just
not allowed to be missing. We enrich our description by adding this

information about mandato:x features of the concept.

Information comes too from new good examples - if this new thing is still
a goodie and yet isn't the same as our standard good example with which we have

compared it, then we need to loosen up our description to cover this new case.

2, Now we look at the first example (figure 1lA) and build up our
INITIAL DESCRIPTION

We see that the arch consists of 3 bricks, one lying on and supported by
the other two standing ones, This step is achieved in Winston's program by
1. using the object-finding program of Guzman mentioned om PV.21 above.

2. using algorithms for determining relations like LEFTOF, ABOVE, SUPPORT,
IN~-FRONTOF .
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Our initial description would look like thisi=

Duerigst_ogu of !ﬁmn 1A

Dl

s

tet The node labelled "group" is the distinguished entry node inte the

description,

We set this delcrigtinn up as our glwdtl of the concept of an Ehu

3. Next we build up a description of the second figure.

mﬁw&“ of ﬁﬁo 1!

D2



4, Now comes the task of comparing descriptions.

In each case we have a group of 3 bricks; we can match up the lying
bricks (AiD) as each is supported by two other standing bricks. In each case,
one of these standing bricks (BiE) is to the leftof of the other (CiF),

E’. There is an extra "abuts" arrow connecting bricks E and F.
We conclude that this is the unwanted feature in D2 which makes it a

non—-example.

Let us spell out in greater detail how we might perform this comparison,
The process involves matching the nodes in the two networks and deciding which
nodes to pair up., We note that any node or arrow may be present in one
description and not in the other.

a. We start at the entry nodes. In each case we find a node with 3 arrows
leaving it. Furthermore the arrows have the same labels. We decide to pair
up these nodes as a matched pair.

one-part=-is

First node in D1 First node in D2

b. We then follow any one of the arrows out of the D1 member of the linked pair,
locate the node it connects to (the daughter node) and examine this node. For
example, suppose we choose the arrow going to Brick A, This node has 3 arcs
leaving it and none coming in (apart from the one we arrived on). We compare
this with each of the nodes one arrow along in D2 to find the one which is most
gimilar. Brick E has 3 entering and two exit arrows while Brick F has 4 coming
in and one leaving., Brick D is the obvious winner since it has the same number
of arrows as our criteria node, and moreover these have labels which match up
exactly with those of the criteria nodes, so we link these nodes as followst=
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Now we repeat step b. for each of the other daughter nodes of "group'
in D1, attempting in each case to find a node in D2 which best matches it.

Ca

For Brick B, the comparison looks like thisi-

incoming arrows outgoing arrows:
Brick B supported by standing; leftof
Brick E  supported by; abuts standing; leftof
Brick F  supported by; leftof; abuts standing
1. Q: What do we need to do to Brick E so that it will exactly match Brick B?
At Remove the relations "abuts",
2. Qt What do we need to do to Brick F so that it will exactly match Brick B?
At Remove the relation "abuts";
Invert the relation "leftof".
Conclusion: The change in 1 involves fewer steps than does the change in 2.

We choose Brick E as the pair to link to Brick B, under the transformation
E Remove “abuu"'__[

The same transformation converts Brick F into an exact match of Brick C.




der the transformation
[Ramva “abutl'g

- ..matched pair - - --

under the transformation
Eamvc "mm'ﬂ

_ . -matched Eair-_‘__

the transformation we had to make in order to get a match. Another way of

saying this, is that Remove "abuts" describes the mismatch. The way to

our model a "must=-not=have" note.

MODEL OF AN ARCH

must=-not=have = ABUTS

Note:/

5. Now we have located the bug in figure 1B, and can describe it in terms of

ensure that we get a match in the first place is not to allow an "abuts'" relationm.

We capture the information gained from analysing this bug by recording on

i
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Note: We have marked the "must-not=-have" note using a crosshatched link.

This is to emphasise its meta=comment nature - to distinguish it from
arrows which will participate directly in the matching.

EXERCISE Repeat the process on figures 1C and 1D.
| ———ra
Omit the detail in steps 4a=c.

(1) Form descriptions of the figure
(2) Find the mismatch by inspection
(3) Update the model appropriately
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:
VISUAL PERCEPTION

We are interested in studying machine vision for several ?aasnnl:-

1, To increase understanding of human perception {
2. To increase understanding of intelligence - perception
is a rich area in which to study knowledge-based realéning.
3. Many connections with other branches of A.I. e.g. perceptual
strategies in game playing.
4. Application possibilities, e.g. the designing of industrial

robots.

Kinds of Tasks

I  Robot perception of real world scenes of simple objects.
- recognition of objects as a task in itself
e.g. first set of Freddy programs recognised spectacles, cups.

= as part of performing actions on such objects.
€.g. assembly tasks, as in current Freddy project; pushing
boxes around, as at S.R.I.; copying structures from
a collection of spare parts, as at M.I.T.

I1 Understanding line drawings
= line drawings as input using digitiser, e.g. Peanuts cartoons.
= low level symbolic description of line drawings as input
- typically drawings representing scenes from bloéks world.

General Remarks

Much of the work has involved a simplified world of objects with flat
surfaces, We know the world does not consist of only aucﬁ objects;
however, this simplification has been a very productive one, leading to
the development of a series of programs, each built as a rﬁnult of the
experience gained from, and attempting to repair the limitations of, the
previous ones and all contributing to an A.I. theory of perception.

It is convenient to start with a consideration of line drawings
representing scenes of planar objects. We will come back to the
problem of real world input later.



Fig. 1b

linklist: [ [R1 R21[R2 R31I[R3 R11[R1 R21[R4 R51[R4 RSILR3 R21[R3 R1] ]
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INTERPRETATION OF LINE DRAWINGS

We take up the story begun on pp. V.20 and 21, where we introduced some

of the ideas incorporated in Adlopho GUZMAN's program, SEE.

(a)

(b)

(c)

Points to recall

The task under conmsideration is the SGEMENTATION task.

When we as observers look at a line drawing, say fig. la, we see
one cube lying on another. We allocate the regions to one or
other of the cubes present. How do we do this? What information
would we need to provide a program in order that it could perform
this task ?

We follow Guzman's program and tackle the problem in two steps:-

(i) Collect local evidence for linking regions.

(ii) Weigh this evidence and accumulate groups of regionms,

What kind of local evidence can we use ?

We exploit the fact that some places in the picture contain more
information than others VIZ. the points at which several lines meet
i.e. the VERTICES or picture JUNCTIONS. As usual, we need some
vocabulary for describing these picture fragments in order to be
able to talk about and use them. To the set of junctions already
mentioned - the FORK, the ARROW and the ELL - we add two more, as
shown in fig. 2, VIZ. the TEE junction and the PSI junction.

ELL - no links ARROW - one link

FORK - 3 links TEE - no links

PSI - 2 links

Fig., 2: JUNCTION TYPES and the links they generate.




M ; generation

rii. 2 displays the links generated by these junction types.

(a) We have already considered the FORK rule (p. V.20), which links all
three regions comprising the junction; and the ARROW rule (p. V.21),
which links the pair of regions which flank the shaft of the arrow.

(b) An ELL junction contributes no links.

(c) The links generated by a PSI junction reflect its origin; that
is to say, it is really an ARROW sitting on a FORK.

(d) A TEE provides powerful evidence for mot linking the regions on
opposite sides of its crossbar.

e.g. in fig. 3, the circled TEE junction is evidence that
Rl and R4 belong to different objects.

Programming Suggestions

Suppose we input the picture description as a list of junctions where each
junction is specified by its name; the list of lines which form it; and
the list of regions which meet at this point, given as the region name
alternating with the size of the angle it contributes to the junction.

For fig. la, such a junctionlist would take the form:-

[ [J1 [L1 L2 L5] [R1 40 R2 70 R6 2501 1
(42 [L1 L31 e

[J70 [L5 L6 L14] [R2 110 R4 70 R6 18011 1.

To CLASSIFY a junction, we need to know:-

(a) How many lines meet at that junction, and

(b) whether any of its regions contribute more than two of the quadrants
around that junction ?

We can now write a procedure for each junction type which embodies its
behaviour i.e. which knows how to recognise an instance of itself, and
how to generate its characteristic links. Consider an ARROW procedure
taking as input a junction specification in the form indicated above.

TO ARROW 'JUNCTION
Step 1 answers the question: 1Is this an arrow?
(a) find the number of lines which comprise it.
if not = 3 then result false and stop.
(b) find a region which contributes a greater-than=-180°







angle to the junction.

if none, then result false and stop.
Step 2 is reached only if :JUNCTION is a bona-fide ARROW.
(c) find the pair of regions around the shaft of the arrow.

(d) add this pair to a global linklist.
EXERCISE

(a) Write a set of such procedures, one for each junction type.

(b) Using these, write a program to generate the linklist for fig. la.

Grouping regions using the linklist

The linklist captures all the pieces of local evidence we have accumulated.

We now need rules for weighing this evidence. A simple rule could be:-

One-link rule: Group all regions which are linked to one another by

at least one link.

Given a linklist such as that shown in fig. 1lb, and a global slot for
accumulating all groups of connected regions, initially empty, which we
call GROUPLIST, we can write a procedure for grouping regions containing
the following steps:-

TO GROUP 'LINKLIST

Step 1 if :LINKLIST empty then stop

Step 2 choose a pair from :LINKLIST and set this up as a group

Step 3 find all pairs containing at least one element in common

with this group and form into PAIRLIST

Step 4 form the union of all such pairs and add to :GROUPLIST

Step 5 call GROUP recursively with input LINKLIST-without-PAIRLIST

end
Applying this procedure to fig. 1lb, we would produce the GROUPLIST

[ [R1 RZ R3] [R& R3] 1 ? What about Ré

Refining and addins to our rules

1. ADDING a matching TEE rule
Ve need such a rule to segment fig. 3 on p. V.33

Matching TEE rule

..Ihth_‘t._;_-L__



 " rule applies when we have a pair of TEE junctions whose shafts are
€ollinear, as in the figure. We link regions on corresponding sides of
the shafts. Ve have already met this rule in the PIE-SLICE example on
P V.16; it enabled us to hallucinate arcs Passing behind the pie-slice
Eo complete the circles. 1In fig. 3, the effect of this rule is to enable
us to "imagine" the part of the low flat object which lies behind and is
OCCLUDED BY the object lying in front of it.

2. Two-link rule
—xp alik rule

When we try our simple one link rule on figs. 4a and 4b we come up with a
single group in each case. Whilst thig might do for fig. 4a, it seems
unsatisfactory for fig. 4b which ought to be seen as two separate bodies.
One way out for thig figure would be to require at least 2 links between
regions before admitting them into the same group.

3 Iuhibiting link-formation

While this rule would produce a more Yeasonable solution for fig. 4b, it

would not help in fig. 5, It is true that this could represent a single
body with the top brick glued on to the bottom one; however, it would be
nice if our pProgram could separate these two. We can achieve this by

introducing the idea of inhibigiﬂg_link formation in certain contexts.,
That is to say, if we allow the context of a junction to influence the
information it yields. Thus, if the arm of a fork ends in the barb of an
arrew, do not place the link across that arm. i.e. the dotted link is
inhibited,

This gives the desirdd effect in fig, 5,

Another inhibitory situation arises when one of the regions contributing to
4 junction is known to be background. In this case we do not place links
between this and other regioms,
€-8. at B in fig, 5, we would only place one link;

at A and B in fig. 4a, we would also only place one link.

Further examples require the addition of more inhibiting rules.
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of GUZMAN's program in its final form

"In the first pass, the program gathers evidence through the
vertex-inspired links that are not inhibited by adjacent
vertices. In the second pass, these links cause binding
together wherever two regions or sets of previously bound
regions are connected by two or more links. It is a some=
what complex but reasonably talented program which usually
returns the most likely partition of a scene into bodies."

(E DB. figo 6)

This summary is taken from "The MIT Robot", P.H. Winston (1972) in
Machine Intelligence 7, Edinburgh University Press.

PROBLEMS

The program comes to grief on fig. 7 and fig. 8.

In fig,

7, we notice that the Program cannot SEE holes.

In fig. 8, it cheerfully accepts the impossible DEVIL'S PITCHFORK as
one body.

An analysis of these definiencies provides the

basis for the next group
of scene analysis programs.
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INTERPRETATION, SEMANTICS AND MODELS

Consider again the configuration in fig. 5 (p. V.36), which led us to
postulate our first inhibitory rule. The source of the link that caused
the trouble was the FORK at A and the difference between this fork and
the forks in the previous figures is that it occurs at a concavity in the
object, whereas previous forks were at COnvVex COorners.

Another way of saying this:-

Whether or not a linkgenerating rule works, depends on the

3D situation represented by the 2D drawing.

That is to say, we need to attend to the 3D feature to which the 2D
fragment corresponds. When we see fig. la (p. V.30) as one cube on another,

we are using the following mapping rules from the picture domain into the

scene domain.

lines in the picture correspond to edges of solid objects;
regions in the picture correspond to surfaces meeting at these edges;
and junctions in the picture correspond to corners, where 2 or more edges

meet, i.e. where several surfaces meet,

The CLOWES-HUFFMAN linelabelling technique

As pointed out on p. V.20, when we look at a corner of a convex object end
on, so that all 3 surfaces which meet at that corner are visible, we depict
that corner as a fork in our line drawing. Our fork rule which links all

3 regions does so correctly. If we rotate the object (or walk round it)
until just beyond the point where one of the surfaces disappears from view,
a drawing from this point of view will show our same corner as an arrow.
Again the 2 surfaces which remain visible are just the ones which the arrow
rule links. But we would like to be able to handle concave objects as well.
If we look at the concave edge of an L-shaped solid (labelled "-" in the

figure),

we see that the corner at which it meets 2 convex edges (labelled "+")

is depicted as an ARROW. If we rotate this solid énti -clockwise, say)



until the (left hand) surface disappears, that corner is now represented

by an ELL.

%
2

One arm of this ELL corresponds to the convex edge at which the remaining
2 vigible surfaces meet. But now one of these surfaces disappears under
the other arm of the ELL; this latter line depicts the edge of the
occluding surface A. We call such an edge an OCCLUDING edge, and label
it with an ™". The labelling convention requires the occluding surface

to be on the right when facing the direction of the arrow.

So our occluding surface is partly hiding one of the original 3 surfaces
we could see, and totally hiding another. Notice that all three surfaces
we have been talking about belong to the same body. In scenes containing
several polyhedra, a so-called occluding edge can partially or completely
hide surfaces of bodies other than the one it belongs to. The external

edges of all bodies occlude the background.

There are 4 possible interpretations of a line

1. The line represents an edge, both of whose contributing

surfaces, A and B, are visible.

(a) convex, labelled = "s" A +

B
! n_n A 2=
(b) concave, labelled - B
2. Only cne of the contributing surfaces is visible; the arrowhead

labels an edge that belongs to the (occluding) surface on the right

(as you move in the direction of the arrow)

(c) occluding: in~pointing arrow g ‘>
(d) occluding: out—pointing arrow <: g

(C is further away and passes under A or B)

b i
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,fﬁictorial Inference

‘Now label fig. 8 (p. V.38). You will notice that different ends of lines
‘A, B and C have different labels on them. We have contravened a basic
~ rule of polyhedral scene interpretation, VIZ.

A given line (in the picture domain) must have the same

meaning (in the scene domain) all along its length.
Using this single COHERENCE rule the line labelling method (published
independently by Clowes 1971 and Huffman 1971) correctly detects impossible
objects like this devil's pitchfork.

What is the effect of adding all this information ?

Since there are 4 possible interpretations of a single line, there are 42
possibilities for an ELL and 4° possibilities for each ARROW and each FORK.
If we were to embark upon the task of automatically producing all possible
labellings of a given picture, say, a simple cube, by systematically
considering the possible labellings of each junction, the space of
possibilities we would be searching over would be very large. We appear
to have created a combinatorial explosion. The striking fact is that
very few of these are physically possible. These can be visualised using
the following reasoning:-

The 3 planes which meet at a cormer divide the space around that corner into
8 octants - some of these octants are filled with solid material and some
are empty.

one  octant filled implies all convex edges contributing to corner
three octants filled implies 2 convex and one concave edge
3 five octants filled implies 2 concave and one convex edge

seven octants filled implies 3 concave edges.

Any cormer can be viewed from each unoccupied octant around it and
ALL VIEWS FROM A GIVEN OCTANT GIVE THE SAME CONFIGURATION.

Fig. 9 (p. V.42/43) shows the possible views for each corner type-

This figure summarises the legal labellings which have a meaning in the

real world.

We have added semantic information to our system, but instead of searching

over the whole space of theoretical possibilities, we need to search only

over this restricted range of possible corner models.
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EXERCISE

Use the table of possible line-labellings to generate all possible
labellings of a cube,
Notice that since the last choice has to mesh with the first, you will

produce a graph, best represented on line drawings of a cube.

Another look at GUZMAN'S program

Now we can look back at the linkgenerating rules. We remarked (and in
this, we use the analysis of Mackworth 1974) that Guzman's program works
as well as it does because of the implicit assumption about convex
bodies. Consider the legal labellings table again and eliminate all
those possibilities which involve concave edges - there is now a unique
labelling for each junction.

In the case of FORKS and ARROWS, if we disallow all lines labelled concave,
we are left with the unique labellings

If we look at fig, 9 (p. V.42/43) showing how the various ELL labellings
arise, we see that all but the first imply a hidden
concave edge.

Progressive constraint satisfaction - the WALTZ effect

A dramatic reduction of the search space can be achieved by a PAIRWISE
ELIMINATION OF POSSIBILITIES. This involves the same rule we have
already used, VIZ that a single line must have the same label along its
entire length. By comparing adjacent pairs of junctions at the start
of the search and satisfying their mutual constraints, we can filter out
many of the possibilities from further consideration.

1 —_

P P | P ==
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>

For example, consider 2 adjacent junctions one ELL and one ARROW

e .,.J/
f“'\:’ _— : i

)
X2

Whichever of the 3 legal labellings of the ARROW we choose, we will
never have a match with thelz starred possibilities of the ELL junction.
So under these particular circumstances, these latter two need never be
considered again. By repeating this process of pairwise constraint
satisfaction on each adjacent pair and by allowing the consequences of
each elimination to percolate through the whole figure, a remarkable
reduction in the search space is achieved. To use an analogy, the
more specified your piece of jigsaw puzzle is i.e. noting its colour

and surface markings as well as its contour, the fewer places it is
likely to fit,

An account of the work of WALTZ who first noticed and exploited this
effect is given in "the MIT Robot" (reference p. V.37).

EXERCISE

- Try the effect of pairwise elimination on the cube example used previously.

e is yet a further bug in our method, which shows up when we use it on
ig. 10 (p. V.46). This is satisfactorily labelled, i.e. accepted as a
1 figure, because the method cannot distinguish between different

of convexity or concavity and makes no requirement about surface
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nce. More recent programs have been generated by this bug but

‘these are beyond our present scope. Locating and analysing surfaces

and identifying the solids to which they belong leads us into the next

section.
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- OBJECT IDENTIFICATION AND THE USE OF STORED PROTOTYPES

- -

~ Task:

We have a real world scene of 3D objects and we wish to specify a
perceiving system which can say what these objects are. This is the
IDENTIFICATION task. We restrict the objects to planar solids and
provide a set of PROTOTYPES so that objects are SEEN AS some

- transformation of these models. Such a system embodies the notion of
the continual perception of familiar shapes under a wide variety of
transformations - each model represents an invariant percept,

We base our discussion on a program implemented by ROBERTS in 1963; it

predates the programs already described and does not use junctions or
line-labelling.

To motivate the discussion, we illustrate the kind of answer we expect

our system to produce. In the first example, shown in fig. 1 (balaw) the
2x1 cuboid is SEEN AS A CUBE expanded along the Y-axis,

MODEL TRANSFORMATION OBJECT

expanded along /

' T
o ey (PSR
o
- :
-

Cube Hams 2x1 cubeid

the Y-axis

In the second example, shown in fig. 2 (p. V.48), the COMPOSITE object, an

L-beam, is SEEN AS a combination of trma}omtim of two inumcn of the
CUBE prototype.
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TRANSFORMATION

———— axpanded along Z axis
and rotated

/’:‘ol:nud and stuck

on to side of cube 1

PICTURE

Fig. 3.
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METHOD

In order to find the relation R (see fig. 3 (p. V.48)) between the MODEL
and the OBJECT, we take an indirect route via a TV camera picture of the
unknown object. We set up the more tractable task of finding a PICTURE
description with which to compare our stored MODEL description and so
derive the relation H. Then we can use R = HxP™ (the inverse
transformation) to solve our problem.

Picture description

Taking a picture of the object corresponds to projecting 3D points in the
object through a focal point on to a 2D picture plane (see fig. 4 below).

For a given camera and picture size, this transformation is known.

5 ¢ -n\\\\\“\hhzicture planc
D

focal point A

The first part of ROBERT's program consists of converting digital intensity
values of the picture input into a line drawing and finding closed picture
regions. For present purposes, we assume that this (very considerable) task
has been completed. The resultant PICTURE DESCRIPTION consists of:=

(i) set of lines represented by their endpoint coordinates, and
(ii) a set of regions bounded by these lines.

Model description

We use three prototypes as shown in fig. 5 (p. V.50). A MODEL
DESCRIPTION consists of:=

(i) a set of point coordinates representing the corners of the model, and

(ii) a list of the polygons surrounding each point.
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Given the three models shown, the set of APPROVED polygons is restricted
to convex polygons of sides 3, 4 or 6.

Each point on a CUBE model has 3 quadrilaterals around it.
Each point on a WEDGE model has 2 quadrilaterals and 1 triangle
around it,
Each point on an HEXAGONAL PRISM model has 2 quadrilaterals
and 1 hexagon around it.

Model=-picture matching - i.e. finding the transformation H.

Under ideal conditions, we need only know what the regions around a
picture point are in order to assign it to the correct model. Iin
practice, the matching process is complicated by two factors:-

(a) The presence of COMPOSITE objects, e.g, the L-beam in fig. 2 (p. V. 48)
(b) OCCLUSION of one object by another as in fig. 6 (below).

Fig, 6
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- means that regions in the picture may not belong to the set of
D POLYGONS.

Our task is to find the 1 argest picture fragment
ﬂieh will home in on the right model most rapidly, where "right" means
‘contains a matching model fragment. Roberts provides an ordered sequence

of 4 tests, allowing successively greater departure from the ideal - i.e.

from a picture of non-composite, non-occluded object.

illustrate by considering a picture of a simple cube, and the collection
of objects depicted in fig. 6 (p. V.50).

Test 1 Find a picture point which is completely surrounded by
approved polygons. A is such a point

(7 picture points
required)

(See also point A in fig. 6 (p. V.50))

Test 2 Find a line which has an approved polygon on either
side of it. e.g. line AB

(6 picture points
required)

i

(See also line BC in fig. 6 (p. v.50)

2st 3 Try for an approved polygon with a line coming from
one of its vertices : ABCD, with line BE.
c

(5 picture points

f2 required)

(See also DEFG,with line DH, in fig. 6 (p. V.50)
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Test 4 Find a point from which 3 lines emerge. e.g. point D.

(4 picture points
required)

(See also point E in fig. 6 (p. v.50).

Selecting_a model

The next step is to use the best PICTURE FRAGMENT (this will be the
largest fragment which passes the above tests) as the basis for model
selection. Roberts uses a predetermined order of models i.e. CUBE -
WEDGE - HEXAGONAL PRISM over which the program searches for a MODEL
FRAGMENT to correspond to the PICTURE FRAGMENT. That is to say, it looks
for a MODEL point surrounded by the same polygon structure as the selected
PICTURE point and constructs a list of matching (i.e. topologically
equivalent) MODEL-PICTURE points pairs.

If the object were identical in shape, size and orientation to the
standard prototype, there would be an exact match (taking into account
the loss of the third dimension) between the picture points projected by
that object and the model points with which they have been paired.

A MISMATCH reflects a transformed model. To get an intuitive feel for
what this could mean, consider the upper surface of a cube as it is tilted
backwards away from the vertical. Two of the angles, starting off as 90°,
would become increasingly more acute, and the other two more obtuse. The
degree of acuteness (obtuseness) reflects the degree of tilt.

ROBERT's program uses standard matrix manipulation to calculate the
combination of transformations (rotationitranslation}perspective/expansian-
along-an-axis) to account for the mismatch.

Finally, the selected model-plus-transformation is used to generate the
rest of the picture, i.e. to PREDICT all the remaining picture points not
so far involved in the matching. These predicted points are compared with

the actual picture points. Three possibilities arise:-
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'a) A fit means we have found the correct model and the transformation H.
'b) If some of the model generated-points fall outside the external

. boundary of the picture, this means we have the wrong model and

we try another. :

(c) If all the generated points fall inside the boundary but de not
account for all the picture lines, this indicates that we are
dealing with a picture of a composite object. We need to decompose

the object into subparts which can be seen as transformed models.

1
Decomposition
Consider the L-beam in fig. 2 and reproduced below in fig. 7.

Finding a "good" picture fragment involves trying the four

tests outlined above successively.

There is no picture point surrounded by three approved polygons (Test 1).
Applying Test 2 yields three possible candidates. Line 1, flanked by
regions A and B, would find a matching fragment in the CUBE model,

but when the rest of the picture is generated by this model, some

points fall outside the picture boundary.

) = used point

Fig. 7.
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Line 2, flanked by polygons B and C, 1s more promising; the
points predicted by the CUBE model which it matches would fall
within the external boundary of the picture. Roberts decomposes
the picture using the following steps:—

1, All model lines and points are added to the picture if
not already there (dotted lines in fig. 7 (p. Vv,53)).

2. 1f a model point falls on a picture line, insert the
point (X in fig. 7 (p. V.53)).

3. Each visible model point in the picture which does
not comnect to any non-model line is marked "used"
(@in fig. 7 (p. V.53)).

4. Delete all used points and their attached lines and

polygons
Carrying out these steps on fig. 7 leaves us with fig. 8.

-~
~
‘\.,

Fig. 8.

The remaining picture is matched to the cube model under the

transformation "expansion-in-Y-axis".

Starting with line 3, flanked by A and D, produces the result shown
in fig. 2 (p. V.48).

NOTES

1. We observe that Roberts' first test, VIZ find a point surrounded by

3.

three approved polygons, corresponds to Guzman's FORK heuristic; and
his second test, VIZ. find a line flanked by accepted polygons is just
our old friend the ARROW rule.

Roberts' system incorporates a two-way addressing process whereby stimulus
cues ("good" picture fragments) address or invoke internal models, which

in turn suggest (predict) where the rest of the picture will be.

Combining the ideas of Roberts with those of Guzman, Clowes & Huffman,

we see the possibility of a hierarchy of semantic models.

Points 2 and 3 will be taken up again in a later lecture.
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LINE FINDING

_' ﬁ.‘l-. systems developed to analyse real-world scenes have involved producing
ne drawing as a definitive stage in the processingof the scene. Fig. 1 (p. V.56)
typical stages in the process of transforming a TV camera picture into a
tion of the scene. We give a simple-minded version of the second st.age

E 'pracass VIZ the detection of discontinuities in the intensity array, using

dient operator and t:hruhohhng_ and then discuss difficulties which

: and proposals for overcoming these problems.

- operator

picture of a 3D scene records the light intensity or brightness level (a

»t of illumination and reflectance of the surface). The brightness intensity
small area of the resultant picture is converted via an analogue-to-digital
ertor into an integer to produce an array of numbers - the "digitised image". A
portion of such an array (under near ideal conditions) might look like this:-

rows 11 g e et & SRSy 6

12 o U A - -l TS R

13 ) PN TR O Gl

columns AlBlVEY1DHETE |6

interested in finding picture edges of interest, i.e. "significant" local
in picture brightness. So we examine what is happening in the immediate
ourhood of each point by passing a 3 x3 grid across the whole array, and

g the gradient at each point as follows:-

i
it D12 is flanked by column E, which sums to 16/ S i B E R st = A2
and column C, which sums to &j'

and by row 13, which sums to 12

row difference= 1
and row 11, which sums to 11_]

1 direction. In contrast,

" Bl12 vyields a column difference of 1
\ and a row difference of 1

there is a lot happening in the row direction and not very much change in




STAGE 3

STAGE &
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V.56
OUTPUT
to produce b
take TV camera picture it brightness array

apply local gradient 5 prnduce= edge point description

operator and thresholding - site of significant
at every point in image . intensity gradients

fit line segments to ta produce line drawing description

edge points and - lines : endpoint
identify closed regions coordinates :
- regions :boundary . i
lines and junctions
‘— junctiors : coordinates &
. of points (2D) Ly
1 5 .
compare line drawing hoda ad ! i3
with stored prototypes =
- surfaces: units normal .
to face
- edges : length in
real numbers -
- corners : 3D coordinates to produce IDE,NI;IEIED SOLIDS LOCATED
AND : IN 3-SPACE
use information about the
camera position and the
supporting plane of the /
scene J J
i )
EET
tag

Fig. 1 Showing stages in scene analysis
(derived from Falk (1972)). as I

b
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_jfﬁi@ute the gradient as

‘the amount of difference = ycolum difference® + row difference®

‘the direction of difference = <Solumn ﬁ1fference
as ite tangent) row difference

TE that the edge should be perpendicular to the gradient. Repeating the
process for each picture point, we get an array of gradients. Since we are
not interested in small differences, we eliminate these by applying a threshold
leaving only the edge points of interest.

3

Fitting line segments

Under ideal conditions, the edge points found in stage 2 should line up nicely.
Unfortunately difficulties arise with actual pictures of real world scenes due
to mutual illumination, scattering effects at edges, smudges, shadows, object
deformities such as surface chips, surface markings and a whole battery of
instrument defects. Background noise is high; wariations within a picture
region can be larger than the step across to the next region. This gives rise
to spurious points which are above the threshold and if we increase the threshold
we risk losing significant points. In general it is difficult to find a good

- compromise! Consequently a line finder which tries to piece together edge
points by tracking at 90° to the gradient direction at each point, i.e. by
Mfollowing its nose" in the direction of a putative edge can be misled by wrong

- local data into going off in the wrong direction:
pLnts.

and hampered by missing edge

0 overcome these difficulties, several approaches have been used, which include
as of the following sort:-

| Brightness contrast across edges falls into 3 categories:-

Biaa el

step roof peak

S0 use a set of different gradient operators to facilitate
ction of particular edge types (Binford-Horn) .

k at edge points more globally to find sets of collinear
s (0'Gorman-Clowes) .



e.g., concavities are good places to start. They could conceal a T-junction,
e.7. at A, so look for one by looking along the extension of one arm of the
concavity; find the 3rd line at a junctionm, e.g. B, C, by doing a circular

scan; in either case try to find a line parallel to a contour line.

(4) Don't try too hard for a complete line drawing at preprocessing stage and
leave it to high level programs to complete the picture by adding lines.
e.g. Falk provides 3 procedures to do this job, VEL o=

(i)  JOIN which can complete the face F in (a) by joining the 2
hanging collinear lines L1 and L2

"

A /{:_r 1
A
F
Pl
L1 L2 i

(ii) ADDCORNER which extends dangling lines L1 and L2 in (b) to

complete the corner and so complete the face F.

(b)

(iii) ADDLINE which looks for evidence that a complete line has been
missed and adds a line between Pl and P2 in (c) to split F into

e
B

.

two

(e)

e
P2
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s

improvements in line-finding listed above involve using global

, using progressively more context, using partial results to suggest

ible position and orientation of lines still to be found.

._‘g, collinearity of edge points (2 above)
; collinear lines already found (4a)

- parallelism (3)

known junction types (3, 4b and c)

i.e. A KNOWLEDGE OF WHAT 1S BEING LOOKED FOR 15 DEPLOYED TO PROVIDE
GOAL-DIRECTED SEARCH.

JTERNATIVES TO LINE FINDING

Instead of looking for discontinuities in the intensity array to find lines

~in the picture, we can look for REGIONS of similar intensity
e.g. The programs used in the Edinburgh robot project to recognise
- spectacles, cups, etc., mentioned on p. V.29, used REGION FINDING.

We can use range-finders to locate surfaces of objects in the scene
e.g. (I} the LINE-STRIPING technique in the current FREDDY project
(ii) the use of a laser beam at Stanford, and by vision workers

in Japan.
TS

¢ assumption that producing a line drawing is a necessary stage in the analysis
--h.sceue is open to question. It would seem more profitable to regard line

E aﬁing; as an expression of - i.e. as generatable from - an internal description
ch is itself a 3D description. This is not to say that the reverse process
a't occur - it obviously can, When in fact a line drawing as such is input,
as a diagram - or a PEANUTS cartoon - it can be readily seen as representing
scene, as indeed is a drawing composed of dots. In a technical drawing,

a circuit diagram, the conventions in terms of which the elements of the

Wwing map into concepts in the domain
' 4

——— AN AN e M@ans Tesistor

explicitly acquired before the observer can make sense of the drawing.
|

p cartoon devotees gradually acquire a great mass of conventions:-

n a PEANUTS cartoon, "distance" means "distance from action'", and there

3 positions of importance in the picture;:-

~ middle ground — where the centre of the action takes place
-

~ background -~ for observer status

{i. ) foreground - for emphasis.

and Papert (A.I. Memo 252) for a discussion of now children reveal

arnal representations in their drawings.
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CONTRIBUTION TO A THEORY OF VISUAL PERCEPTION

We now draw together themes from previaus lectures.

The formation and use of symbolic descriptions

In our consideration of grouping processes, we built up the notion of a hierarchical

description and suggested a role for an intermediate description (page V.12)

"if we had a description of a rectangle stored away, we could imagine
that finding the hook "[" could invoke this description".

We postulated (page V.8) that it was easier to see the picture under consideration

as a side~view (of a chair and table) rather than as an aerial view, by noting that

"the familiar arrangement of parts triggers concepts that we already have'" and

that "parts take their names from the wholes they are seen to belong to".

We saw (page V.17) how lines can change their allegiance i.e. what they are seen as
belonging to, by virtue of changes elsewhere in the picture., Small loeal Ehangeslin
the display produced large global effects. Grouping elements into larger umits was

part of an "effort after meaning" in which stored experience plays an important role
(page V.17).

In the 4th, 5th and 6th lectures, we considered programs (Guzman, Clowes=Huffman,
Roberts) for analysing line drawings. These programs deploy a vocabulary of
Laascriptions to refer to significant parts of the picture e.g. arrow, fork junctions,

~ and a repertoire of procedures (rules) for manipulating these descriptions. Guzman
s ed how junctions provided pieces of evidence for linking the regions of which they
e part, into whole bodies (page V.32) and how the effect of any one bit of local
dence could be modified by the context in which the junctions occurred, i.e. the

jresence of a particular neighbouring junction could inhibit link formation (page V.35).

the Clowes-Huffman line-labelling approach and Roberts' program introduce the

n of models. In the former, each of Guzman's picture parts has a set of possible
e.g. there are 4 possible edge models for each line in the picture (page V,40),
2ting at a point constitute corner models and the number of physically possible
models for each junction type was seen to be surprisingly small (pages V.42,43).
‘2 complete line drawing, each line connects two junctions, applying a

ence rule that a single line must have the same edge model along its entire
:Elptures the fact that the assignment of a meaning to each junction must take
thin the context of its immediate neighbours. Interpretation of a picture
ﬂ.§§uivalent to searching over the set of possible corner models for each

8l ¥ J .
m in the picture, applying this rule.



In this line-labelling scheme, concave objects are handled in the same way as are

convex objects. Roberts' system adopts an alternative possible mechanism, in which
concave objects are seen as decomposable into a small set of prototype convex models.
Finding the right model involves the topological matching of the polygon structure around

picture points with the polygon structure around model points. It is point—dominated

and no intermediate models e.g. edges or surfaces, are used. Again the search for a
solution takes the form of a search over possible models. A more powerful, suggestive

way of describing the seeing process is as a two-way addressing system whereby stimulus

cues ("good" picture fragments) address (or invoke) internal models (or schemata) and

these models, once invoked, suggest (or predict) what and where the rest of the picture
might be.

We need both the stimulus patterns and bottom—up analysis of the Behaviourists; and I

the candidate models (or WHOLES) and top-down hypothesis-generation of the Gestaltists.
By adopting this middle-ground position, we can account for such features of the human
perceptual system as for example its constructive gap-filling nature - for models
allow us to hallucinate the missing bits; and the role of mental set in perception in
determining which models are to be considered. In the figure on page V.62 we show a

selection of examples to illustrate this two-way process.

Knowledge-driven analysis

thice (page V.52) that when we had collected our model-picture point pairs, we did not
expect an exacf match. Instead, we expected to be able to account for the mismatch by
one of a given number of transformations, i.e. to interpret or make sense of the mis=
match between the incoming perceptual pattern and the stored concept. A crucial
element of stored conceptual structures must consist of knowledge of how to handle such
mismatches.

In our discussion of the low-level process of line-finding, we showed (page V.59) how
a knowledge of what is being looked for can be deployed to provide a goal-directed
 search. The analysis is conducted in terms of assumptions (hypotheses, prejudices)
about what is significant (relevant) and what is noise to be ignored. Notice (page
V.57) that surface markings are listed among the difficulties to be overcome. An
alternative possibility would be to exploit their presence, which is exactly what the
perception psychologist Gibson does in his demonstration of how surface texture can :
provide depth information, = as the surface recedes, the markings get closer togqthef;
Shadows were regarded as a nuisance by the early vision programs, until Waltz shuued;
how to use the evidence they provide to cut down the number of possible interpret;t;?'
of a picture, as shown in the M.I.T. film EYE OF THE ROBOT, Shadows tell us whatlgﬁe-

scene looks like from the viewpoint of the light source.
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is acute angle is SEEN AS a right angle,
Our cube schema has 'right-angled" as
part of its description. Recegnition
involves projecting a right angle on to
the acute angle " ]

Our schemata includes the rule:

Things further away appear smaller:
To get the correct size, enlarge
correspondingly.

Converging lines mean "receding into
the distance'. So we project a
larger man on to the stimulus of
the same size.

"We may regard pictures as lying in a
kind of continuum. At one end
there will be drawings, realistic
paintings and photographs that are
representational. ..... At the
other, the fantasy end, will be
inkblots or pictures in the fire
or in clouds iL5.q

‘ Ay bl
Randraerajie

';"*:\ For most people plate V will be at the
. fantasy end, meaning as little or as
much as an inkblot ..... People
appropriately trained in interpre-
tation of radiographs will recognise
it as a radiograph of part of a
human head ... "

from 'Anatomy of Judgement'
M.L.J. Abercrombie.

Figure 1
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Developing vision systems capable of representing different va
and allowing these to interact in different ways (in a heterarc
on on-going partial results, is the challenge currently being t
vision projects e.g. the FORTRAN CODING SHEET project at Essex
ngTuagﬁﬂfproject and the "pyppEr’ project, both at Sussex Univ
very much influenced by the seminal paper "A framework for repr
Marvin Minsky.

Action perception

rieties of knowledge,
hical fashion), depending
ackled by workers in A.1.
University; the "SPOTTY
ersity. This work is

esenting knowledge" by

The view of the perceptual process as a constructive, interpretative activity in which

"Je can not SEE. We can only SEE-AS".

we see the current situation in terms of what we know, is captivated by Clowes' slogan

Work in this department on Action Perception has involved an extension of these ideas

to a richer domain which includes moving objects. This can produce a dramatic increase

in the range of concepts which enter into the interpretative p

rocess. Thus moving

objects become participants in event—sequences Or actions, in terms of which they

acquire roles such as agent or patient. We become concerned with what caused the

perceived movement and with the attribution of motives to the participants. The

Belgian Psychologist Michotte used gimple 2-D "meaningless' shapes such as squares,

circles and triangles moving in relation to ome another over a

screen; subjects

viewing such displays receive impressions of one object chasing another, pushing one

another, fleeing from another, and so on. Except for isolated instances, these

effects were independent of the particular shape used. These

observations form an

ideal basis for our task of modelling the perception of moving objects on a computer,

In the classical LAUNCHING experiment, the subject fixates a stationary red square (B)

in centre of a white screen, while from a point 40 mm left of centre, a black square (A)

travels towards B and stops when it reaches it; B then moves off to the right.

Observers see object A bump into object B and give it a push.

What we require in order to produce an "explanation'of, or to give an account of, the
L]

impressions reported by Michotte's subjects is, in the first instance, the development

of a vocabulary of symbols appropriate to various levels of interpretation of the

kinetic displays.

l‘
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low-level descriptions of position :bar (position Py (time tl)

bar (position p, (time t
low=level description of change of position : A moves

)

. intermediate description

in relation to another object : A approaches B rapidly
in relation to a previous movement : A moves to-and~fro
high-level description of causal sequence : A bumps into B and

pushes it forward

Depending on the reference point chosen, the description of the movement

of an object, e.g. A moves, can become:

A approaches B
or A movesacross screen

or A withdrawsfrom B

A important issue is how to represent moving objects in the computer in such a way as

 facilitate the generation of descriptions of their movements. We input the process
luum as successive time slices, or conceptual snapshots, depicted as a frame
equence rather like a strip cartoon, It is as though the observer takes successive
amplings of the movement processes and forms descriptions of each, so that the

erence-descriptions between successive frames express the changes which have

ed during a particular time-interval. (cf.use of difference-descriptions by

:Hr in his ANALOGY program, and by WINSTON in his LEARNING STRUCTURAL DESCRIPTIONS
i

experiments are input to the program in the form of low-level symbolic descriptions
sequence of snapshots of moving objects. The program is required to build up a
ption of what is happening in the form of event-sequences to check relevant

ats, and so decide which of the act types it knows about corresponds to the
‘sequence.

e will in general be more than one way of pairing picture regions in successive

- and we need a way of choosing which of the possible pairings corresponds to an
§G OBJECT IN MOTION. For example, in figure 2

(2]  [ra]
[rs]  [Rg|

Figure 2




" which region should we combine with RS; R3 or R4 to which it is nearer? If we
choose R4 we are left with the pair R3.R6; but (R3.R5; R4.R6) is better in that

it gives a combined pairing which involves the least overall change in positionm.

In Weir (1976)* we detail the steps involved in forming descriptions from the
experimental data: e.g. we show how the factors influencing the choice of a reference

point radically affect the intermediate descriptions generated. Since these latter

form the components of ACTION SCHEMATA, this in turn influences which particular action
schema will be evoked, Fig. 3 gives a representation of some of the features of a
PUSHING or LAUNCHING schema, Any component could evoke this schema. Typically, an
instance of [x collideswith yl] would be responsible for an active search for the
"withdrawal" of the patient y. '"Suggestions" link similar schemata and facilitate

rapid access.

Anyone who wishes to pursue further the view of perception outlined above might like
to read the D.A.I. Research Report No. 15 "Using LOGO to catalyse communication in an

autistic child" by Sylvia Weir and Ricky Emanuel.

% "From object perception to person perception: An Artificial Intelligence view".

Proceedings of XXIst International Congress of Psychology, Paris, July, 1976.
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Figure 3.
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PUSHING

¥ [SUGGESTION
esult
event if preimpact speed
of x <2x
postimpact speed
of y t
co%%gss TRIGGERING SCHEMA]
patient
[default value: y x
inanimatel
(| mms )
[SUGGESTION
IMPACT E duration of contact »>,2 sec,

then try 2 independent movements)
(ie withdrawal noncausal)

Pushing Schema,
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Learning - 1: Samuel's Checkers-player and Hill-climbing

1‘, I;ztroductiun

.'I'his is the first of two preliminary lectures on the subject of
"learning". The topic will be dealt with at greater length in the
Spring Term. For the moment, restrict ourselves to issues directly
related to the problem we've just been discussing, that of playing
draughts,

So today we're not going to discuss basic questions like "what do
we mean by learning?" or "How do we get a computer to learn?". We'll
spend some time on that in the next lecture, but for the present, without
going into it more deeply, just say that the program we're going to dis-
cuss is a leami_n_g program because with experience, it improves it's
standard of play.

2. Aspects of the program

Recall: a game-playing program works by minimaxing back up a game
tree, using an evaluation function on the Terminal nodes which consists

of a weighted-sum-of-features score. Typical features are: piece ratio,

centre control, threat of fork, denial of occupancy, etc.:

s < . + * asssvas
g SAeddadus autatd 2 ¥n®n

Want to lock at this evaluation function in a rather different way then
have done so far. Notice firstly that there are two different ways that
the nodes in the search tree get values assigned to them:

(@) Nodes at the limits of the search get a value by calculating

the evaluation function.

(b) Other nodes get their values by minimaxing the values from (a).

Evaluation score - static, featural analysis.

Backed-up value - dynamic, exploratory analysis.

Notice secondly that the only reason we need an evaluation function
at all is because we can't afford to search the whole tree. If we could
search the whole thing, we would be able to assign nodes their true value

of +1 (win), O (draw), or -1 (lose), But in fact we have to terminate
- ~ the search somewhere, and at these points we have to make do with an
- a@pproximation to the true value.

In other words, the evaluation score is a second-rate substitute for
a full exploratory search. It is intended to tell us approximately what
we would find, if we Were able to carry out the full search that in fact

we can't. J
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3. Generalisation learning

The guestion now is this: in the "weighted sum of features score",
where do the weights come from? What should they be? And the proposed
answer is that the program should.}ggzg'the appropriate weights by experi=
ence - it should continually be adjusting its weights to improve its
standard of play. (It also chooses an appropriate set of features -
more on this below.)

The idea is for the program to play for a bit, and see how well it
is doing. It must then somehow increase the weights of the features
that are helping to make the right decisions, and decrease the others.

How often should it do this? 1f it does it only once per game,
the rate of learning is far too slow, and one is extracting far too little
information from all the activity involved in playing. For example, even
if the program lost a game, it may have been because of just one mistake:
most of its decisions may still have been right. or conversely, if the
program won, does it mean that all its decisions were equally responsible
for the success? (What we are discussing here is an aspect of what is

known as the credit assignment problem.)

So we do the updating after each move. This is sufficiently freguent,

but there is a difficulty. On what basis can the program decide "how well
it is doing"? The simple description given above supposes that there is a
trainer standing by to tell the program "yes, that was a good move" or "No,
you did the wrong thing" - In the absence of such a trainer, how can the
program itself, which is already making the best decisions it can, also
know how good these decisions are?

The solution comes from the two points we discussed in Section (2).
There are two ways of finding the value of a board position, (a) by static
evaluation function, (b} by dynamic search. Since it looks further ahead,
score (b) is less dependent on the details of the evaluation function, and
so it can be used as a criterion for the correctness of score (a).

To say the same thing a different way: remember that (a) is regarded
as a prediction of (b), so that it can serve as a substitute for it. The
better the evaluatien function, the better that prediction. If the evalu-
ation function were perfect, the two scores would be in agreement throughout
the game. So all we have to do to do to see how good the evaluation funct-
ion is, is to see how closely it corresponds to the backed-up score,

So for boards encountered during actual play, compute

A = (backed-up score of board resulting from chosen move)

- {evaluation score for current board)
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If A is 4ye, then the evaluation score made an under-estimate, so
the iye terms in the polynomial should have more weight, and the -ve
terms less weight. If A is -ve, the score was an over-estimate or even
led to the wrong choice of move, so the weights should be altered conversely.
In fact, the program keeps a cumulative average record of the "cor-
relation" between the sign of each term and the sign of A, and this is used
to adjust the weights after each move. The correlation of a given feature
tells us how good a predictor it is, so the better it is, the more weight
it's given. -
Term selection
The evaluation polynomial involes only 16 ocut of a possible 38 features.
The program keeps track of which term has the lowest "correlation", and if
any term is lowest too often, it is replaced by a new term which initially
has zero weight.

With experience this program becomes highly competent, a "better-than-
average" player with good middle- and end-game play, though the openings
remain weak and unconventicnal.

4. Hill climbing
Occasionally during learning, the program is temporarily unable to

improve its play any further. It is then necessary to give it a big
"kick", by setting to zero the weight of the leading term in the polynomial.

Why does this happen?

Samuel is essentially using the technique of hill climbing to optimise
the program's performance. This technique is appropriate when for some
reason you are unable to analyse the task in such a way as to deduce the best
weights (e.g. in draughts, nobody knows how to do this). 1Instead you start
from where the program is and make a long series of small improvements.

Compare this with trying to reach the top of a hill on a foggy night,
without a map. The general idea is to "keep going upwards". One can

(a) find the line of steepest slope and take a step along it;

(b) try steps in different directions, and choose the best;

etc.

This method suffers from various problems. The one that concerns us
here is the problem of secondary peaks (or local maxima) . You may have
reached a peak, but is it the highest one? One solution is to try making
random leaps. To do better, you have to know more about the structure of
the problem. (Another difficulty is that of encountering a "mesa", a
large area where there is no change whichever way you move, and therefore
no clue to the correct direction.)
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climbing is a technique widely used and studied even outside of

REFERENCES
A.L. Samuel (1959), Some studies in machine learning using the game of
checkers. IBM Journal of Research and Development, 3, 211-229.
Reprinted in Computers and Thought (eds. E.A.Feigenbaum and
J.Feldman), pp. 71-105.
A.L. Samuel (1967), Some studies in machine learning using the game of

checkers. II - Recent progress, IBM Journal of Research and

Development, 11, 601-617.

In his 1959 paper, in addition to the "g‘i!peralisad- learning" dis-
cussed here, Samuel describes a form of "rote learning” in which
selected board positions encountered during play are remembered, and used
to increase the effective depth of search, thereby improving the program's

play. See pp. 79-83 in Computers and Thought.
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Learning - 2: Structural Learning and General Comments

1. Digression: "“concept identification" experiments

We take a quick lock at a chapter of Experimental Psychology in order
to provide ourselves with certain terminology and ideas. In a "concept
identification" experiment, the subject is presented with a set of objects
varying in some systematic way, e.g. cards with shapes varying in outline,

number, size, colour, etc. A "concept" is a subset of the objects speci-
fied by a simple rule. Different kinds of rules define different kinds of
concepts:

conjunctive - e.g. red and square

disjunctive - e.g. red or square

equivalence - e.g. both red and square, or neither.
For a given concept, certain attributes are relevant. E.g. for "red and
square", colour and shape are relevant attributes, the rest are irrelevant.

Subject is shown examples one at a time, and told whether or not they
are instances of the concept the experimenter has in mind. The subject's
task is to guess the rule.

A strategy commonly used for learning conjunctive concepts is "con-
servative focussing”. Here the subject remembers the first positive
instance, and then gradually strips away its irrelevant attributes. We
can see that if a new example differs from the first in several attributes
but is still a positive instance, then those attributes must all be irrele-
vant. Whereas if the new example differs in just one attribute and is a
non-instance (a "near-miss"), then that attribute must be relevant. This
should all sound vaguely familiar.

The field was opened up by a book by Bruner, Goodnow & Austin in 1956.
Since then more than 1200 similar experiments have been published.

2., Winston's program revisited
(a) Consider the process of building a model from a sequence of

positive instances and "near-misses", e.g. HOUSE (see Figure 1). The
formation of the MUST-BE and MUST-NOT-BE links is the detection of the
relevant attributes.

(b) When having to relax a reguirement, Winston's program makes an
appropriate generalisation by finding the first superordinate entity that
includes both cases. For example, in case I - C of learning ARCH (see
handout SW/3),it finds that both a BRICK and a WEDGE are acceptable as
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cross-members, so generalises them to PRISM.

e.g. OBJECT
//// \\\\ If something holds for
PRISM both CUBE and WEDGE, the
A 2
e appropriate generalisation
/ is to PRISM.
WEDGE BRICK
CUBE

(c) Previously learned concepts can be used in new ones.
e.g. ARCH as a component of ARCADE (see Figure 2).

Such a concept is necessarily hierarchical: ARCADE could not be learned
without first learning ARCH - it would become hopelessly complicated.

(d) These iterative structures like ARCADE and COLUMN are handled
in the same way as simple structures. The networks have a TYPICAL-MEMBER
link, and a NUMBER-OF-MEMBERS which can be "appropriately generalised" to
be an INTEGER (implicitly, > 2). See Figure 3.
Discussion

Note the central importance of near misses for the learning. Success-
ful learning is dependent on being given a good training sequence. Viewing
learning as the building of an internal description gives us a rational basis
for discussing "good teaching”.

But does this go beyond what Bruner, Goodnow & Austin (1956) did?  Com-
pare this view tith Bruner's own work on education (The Process of Learning,

(1960) ; Toward a Theory of Instruction, 1966).

Limitation comes from the fact that the technique is essentiali; "econ-

servative focussing", so it is restricted to learning conjunctive concepts.
e.g. Could it learn the concept "two bricks in the same orientation"
(either both lying or both standing)? What about th?XCOHCEPt

"oat"? Or "abuts"? Or "near to"?

3. Discrimination nets
Consider the ANIMAL program you played with at the beginning of term:
THINK OF AN ANIMAL

IS IT A MOUSE? 1no
OH DEAR, I DID NOT GET THAT ONE
WHAT ANIMAL WERE YOU THINKING OF? : pterodactyl
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NEAR MISS
FIGURE 6-1 FIGURE 6-2
NEAR MISS NEAR MISS

FIGURE 6-3

FIGURE 6-4

FIGURE 1l: HOUSE
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PLEASE ASK A QUESTION TO DISTINGUISH BETWEEN A MOUSE AND
A PTERODACTYL : is it prehistoric
WHAT WOULD THE ANSWER BE IN THE CASE OF A PTERODACTYL? : yes

THANK YOU, I WILL REMEMBER THAT

THINK OF AN ANIMAL
IS IT PREHISTORIC? : no
IS IT A MOUSE? : no
OH DEAR, I DID NOT GET THAT ONE
WHAT ANIMAL WERE YOU THINKING OF? : whale
PLEASE ASK A QUESTION TO DISTINGUISH A MOUSE FROM
A WHALE : is it enormous
WHAT WOULD THE ANSWER BE IN THE CASE OF A WHALE? : yes
THANK YOU, I WILL REMEMBER THAT

THINK OF AN ANIMAL
IS IT PREHISTORIC? : yes
IS IT A PTERODACTYL : no
OH DEAR, I DID NOT GET THAT ONE
WHAT ANIMAL ¥YOU THINKING OF? :+ dinasaur
PLEASE ASK A QUESTION TO DISTINGUISH A PTERODACTYL FROM
A DINOSAUR : is it spelled funny
WHAT WOULD BE THE ANSWER IN THE CASE OF A DINOSAUR? ! no
THANK YOU, I WILL REMEMBER THAT

THINK OF AN ANIMAL

IS IT PREHISTORIC? : no
IS IT ENORMOUR? : yes
IS IT A WHALE? : vyes

I GUESSED IT!!!

How does the program recognise an animal by testing for suitable
features in a sensible way? By making use of a (binary) discrimination tree:
a tree in which the terminal nodes are names of animals, and each non-terminal

(a) a test
(b) a pointer to its YES-node
(c) a pointer to its NO-nocde.
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e.g. in the sequence above, when the program has learned the first
discrimination it builds the structure.

After adding the second discrimination, this becomes

I

PREHISTORIC?

@4&

And so on.

Exercise 2.1 Draw a suitable discrimination tree to distinguish the objects
CUBE, CYLINDER, PYRAMID, CONE, WEDGE, PRISM, BRICK? What about one for the
objects MAN, GIRL, COW, BOY, WOMAN, BULL?

R The EPAM program uses a discrimination tree to simulate the learning

of "paired associates", i.e. pairs of nonsense syllables, where the subject
 has to learn that when given DAX he has to reply LOM, and so on. By the

- ﬁry nature of the program's learning process it exhibits the phenomena of

E stimulus and response generalisation

retroactive interference

forgetting as a failure of accessing (rather than storage).
s provides a non-probabilistic model of paired-associate learning.

neral comments on learning
and contrasts
_'Eiatical vs structural learning.
e.g. height of man vs number of hands.
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Statistical: summarise wide experience in numbers
implicit descriptions (e.g. Samuel's program)

Structural: reflect characteristics of individual cases
explicit descriptions (e.g. Winston, EPAM)
'significant learning from single instances

(2) Improving an existing program (cf.tuning an engine)
vs

writing a new program (cf. building a bridge)

In the case of improving an existing program, we already have a program
that does the job, and the task is to make it perform better. Such programs
usually have two distinct parts, the part that does the job and another part
that fiddles with the first part.

Trivial kinds of change
(1) Adding new procedures, new data: is this "learning"?
e.g. LOGO doesn't know how TO LAUGH
But if we "teach" it, then afterwards it does?

e.g. We might have a program that stores titles of books and the

names of their authors. But it can't tell us who the author

of Waverley is until it has learned it?
(2) The issue of "store vs recompute"
Essentially a matter of trading off space against time:
should the program remember all the results it produces?
If we are selective enough in what gets remembered, we may get
an improvement of performance (e.g. MEMO functions).
No attempt to define "learning"

(1) Learning as a possible aspect of the answer in the "what is intelligence?"
game. A feeling that a program is not intelligent if it is "merely
programmed" to do some task, but it is "if it learns to do it by itself".

(2) The slipperiness of learning programs when looked at hard. A program
that learns to do task T can usually be thought of as simply doing a
related task T'.

e.g. Samuel's program learns to play better checkers, or it optimises
its performance.
(cf. "the computer just does what its programmer tells it to").

(3) Informal, everyday use of learning as an "explanation" - as an
alternative to "mechanism"? :

e.g. How does one ride a bicycle - you can't be told how to do it,
you have to "learn by experience".
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e.g. From c.1920-1950, Experimental Psychology (especially in the
U.S.) was dominated by the "behaviourist" view which saw learning
as the problem of psychology.

The objection to doing this: the need to have a sufficient
mechanism to accomplish the task. Look at the device/organism at a
particular moment in time: you can ask valid questions about the
mechanisms it's using, irrespective of how they were acquired.

- (BUT ALSO: a deeper sense in which this formulation may be wvalid?)

References
Bruner, J.J. Goodnow, & G.A. Austin (1956). A St of Thinking.
Wiley.
Feigenbaum (1961). The simulation of verbal learning behaviour,
reprinted in Computers and Thought.
Winston (1970). Learning structural descriptions from examples.
Ph.D. thesis, A.I. Technical Report 231, M.I.T. (especially
Chapters 5 and 6).
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o Learning - 3: Perceptrons

1. Background

One of the many striking facts about the human brain is that it contains
more than 1010 neurons, each of which is a sophisticated little computing
device in its own right. In the search for the "mechanisms of intelligence",
many people have tried to confront this fact, and to ask what kind of organm—
isational principle could enable this vast mass of informatiom-processing units
to exhibit intelligent behaviour. This approach is usually loosely called
"neural net" studies (at least by workers in Artificial Intelligence).

Underlying much of this research is the widespread notion "... of thé
brain itself as a rather loosely organised, randomly interconnected network of
relatively simple devices". Several key ideas that arose during the 1940's
and 50's had an important influence on this line of thought, for instance:

- the basic idea that lots (but lots!) of simple elements

suitably put together can yield interesting, complex behaviour;

. the theoretical demonstration in the mid-1940's that networks of
simple neuron~like elements can be constructed to compute any

logical function;

. results that were starting to appear from neurophysiological
studies of the way that information is processed in the visual

systems of various animals;

. proposals from the newly-emerging field of Artificial Intelligence
as to how pattern recognition can be done by using a large number
of independent little decision-making units, working simultaneously,

"organised" in a rather unstructured way.

So far in this course we have examined ways of generating intelligent

viour by imposing an organisation on a sequential process — that is what

amming is all about. By contrast, the emphasis in the neural net studies

s largely on self-organising systems. The extreme case is the idea of a

stem with initially random connections that get selectively strengthened or

kened by learning,
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At one time these ideas were very popular, and much research — both
experimental and mathematical - was done on devices of this kind. Sometimes
over-ambitious claims were made, for example that such devices would be able
to play master chess by learning to "recognise" good board gituations. Now=
adays it is felt (at least by workers in Artificial Intelligence) that this
approach has severe limitations. There is a need for greater sStructure,

for an appropriate match between the mechanism and the task to be done.

One class of device to emerge from this work has a particularly inter=

esting history, and we look at it more closely.

: 24 Perceptrons

The idea is to have a machine that recognises a class of objects by a

simple combining of the evidence obtained from lots of small experiments

. performed independently. Thus the perceptron provides a paradigm for the
intuitive notion of simple decision = making carried out by a richly parallel

{ mechanism,

Presented with an object X, a perceptron computes the values of various

features fi{x). then combines them in a weighted vote:

Ewifi = wlf1+w2f2*w3f3+. “'+wnfn

This value is compared to a threshold 6. 1f Iw.f, > 0, we say the perceptron

responds positively., We want it to respond positively if X is an object of a

certain type, and negatively if not.
Eg. if X is—a-circle;
if X is-a-convex—figure;

if X is-a-single-connected-figure.
1 g @
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We can imagine some figure projected onto a 2-dimensiomal "retina"

, m is "looked at" by a large number of little"demons" each computing one

of the £;« The outputs of these demons are then multiplied by their respective
weights and added together.

How can this device be used to classify objects? Consider two examples:

'Qgggggg*l, Take the simple case where we want the perceptron to recognise
just one particular figure, at a fixed place on the retina. Perhaps a block
capital letter X, as shown in the diagram on the previous page.

.

ILet eaﬁh fi look at just one small spot on the retina, For each fi that
is looking at a spot that should be black if the object is in fact the one we
are interested in, suppose it produces output = ¢ if its spot is black, and
output = =1/ if its spot is white. For each £, looking at a spot that should
be white for the correct object, suppose it produces output = @ if the spot
is white and -1 if it is black.

Now consider the perceptron with all weights = 1 and a threshold of -1
(zif:’.) > =1

If we show this perceptron our desired object, then all the fi will have value
zero, the whole sum will be zero, and therefore the inequality will be true.
But if the .nlbjact differs in any way from the intended one, then at least one
of the Et will have value =1, so the whole sum will be < -1, and the inequality
will be broken,

So this simple perceptron discriminates between our desired figure and
all others,

Example 2. Consider next a case where we want to recognise not just a single
‘object, but a broad class of objects. Suppose we want it to recognise whether
black area forms a single, convex object.

CONVEX NON-CONVEX NON-CONVEX
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One way of testing for convexity - or even for defining it ! - is to

consider collections of three collinear points, p, q, r. In a convex figure,

if two points p and r are black, then all points q on the line between them
must also be black, In a non-convex figure, however, there will always be

some black points p and r which have a white point q between them,

Suppose each fi looks at three collinear spots. If the two outer spots
are black and the middle one is white, let the fi produce output = =1, -

Otherwise the output = 0.

Suppose now there are enough fi's to "cover" the whole retina, in some

sense. Again consider the inequality
D) > -
(€;£) 1,

The argument proceeds as before. If the object is convex, thenm all the fi
will be zero and the inequality will hold true. But if the figure is non-
convex, at least one of the f, will have value -1, and the inequality will be

broken,

So this perceptron discriminates between convex and non-convex objects.

3. Learning in perceptrons

Not surprisingly, given the neural-net backgrouﬁd to the perceptron
research, much of the interest with perceptrons lies in the question of
whether a perceptron can learn to recognise objects. As with Samuel's
draughts program, learning is a matter of finding an appropriate set of
weights, W To get the perceptron to learn to recognise a class C, we
present it with a sequence of examples, some in C and some not. Each
time, depending on right or wrong, we take appropriate reinforcing or

correcting action.

We can make an intuitive argument for the form the correction shbdld
take, analogous to the argument made in discussing Samuel's program., If
the weighted vote Ewifi is below threshold for a figure belonging to C,
then clearly the weights of the positive terms should be increased,. and of
the negative terms decreased. And conversely, if Ewifi > 0 for a.figure

not in C, then vice versa,

One easy way to think about this is to suppose all the_fi have value
either 1 or O. Then the correction procedure takes the form of adding
(or subtracting) 1 to the weights of all the features which have value l.

e



Diameter-limited perceptrons can recognise, e,g. a scene consisting only of : i
rectangles., If all fi output zero for any of

C2 0D R®eeOm;

and -1 for anything else, then we can set all w;=1 and have
(Efi(}{) > -1) if and only if [scene consists of rectangles.] l

But a perceptron camnnot recognise e.g. scene consisting of a single dot ,

Consider the figures:

O a3 () O)

@

£

f?o G\ @O Oo @

For (A), we need Ewifi < B

For (B), we need Ewifi > @, so some wifi (e.g. "’;rgf-;g) must have increased,

Similarly, for (C), some other wifi (e.g. w33f33) must have increased.
For (D) we need Ewifi < O, but this is impossible since both groups
(like f.‘.9 and f33) will have increased.

Neither can it recognise whether a figure is connected. Consider

i e )

A B c D

and divide the £, into three groups,

(1) those that can "see" the left hand end of the figure,

(2) n " " " i right " X " " " n

(e i W pkao " neither end.

Then we can make the same argument as for the single dot. The point
is that we are trying to get the perceptron to make a global judgement = about
connectivity - on the basis of local evidence.
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But the trouble is that B, which is connected, looks locally just
like A or D, which are disconnected.

[But it is quite easy to write programs for a serial machine,
e.g. in LOGO, to determine whether a figure is connected, and
they use very little storagel,

Various other interesting figures can't be recognised:

e.g. objects that contain other objects;
e.g. rectangle embedded in context;

etc,

5. Discussion

There is a general moral to be drawn from the analysis. There is no
point in discussing elaborate schemes for "teaching" a machine to do something

it inherently cannot be made to do. Most of the early proposed schemes lacked
careful analysis of

= their inherent limitations
= the rates of learning

- the sizes of the weights Wi

Consider for example, the inability of the diameter-limited perceptron
to recognise the scene consisting of a single dot.

Notice, however, that Minsky & Papert's analysis applies only to the very
simplest kind of perceptron, called "single layered". Real perceptron
‘enthusiasts play with far more complicated varieties, called "multi-layered",

- and "cross-coupled", etec, It is not at all clear whether limitations analogous
to those of Minsky & Papert apply to these more complex perceptrons, (If you
are interested, see the careful review of the Perceptron book by Block).

References
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Lcmriag - 4: Induction

1., Induction
Inductive tasks require detection of a patterm, or regularity, in the

information presented, such as spotting a trend, seeing similarities, finding
odd-man-out, etc.

Examples

A. Geometric amalogy tasks, These were discussed extensively at the

beginning of the course - see handout AB/1.

Letter analogies. Fill in the blanks:
J 1 O oOF ED =

Letter grouping. Pick out the one that doesn't belong:
AABC ACAD ACFH AACG

Number groups. State what is common: |
eSS 110778

,  Number relations. Pick the one that doesn't belong:
20 X9 §90 -5 15

Number series. State the rule:
1518 2% 24 27 30

Number correction. State the one in error:
. Yt e

Seeing trends. What is the trend?:
ANGER BACTERIA CAMEL DEAD EXCITE

i Word groups. What is common?:
MAIM TEST GANG LABEL

 Word relations. Fill in the blanks:
REAL SEAL MEAT NEAT BORE =—--




F L,

i #- b 58] n\(‘.fﬂ]
= _sﬁnes completion, Your task is to write the correct letter in

the blank: _

f) cocpepd =N
(iiy AAABBBCCCDDX gi -
(3ii) ATBATAATBAT-

sil e ('if:f) S ABMCDMEFMGHM d coivass vuiopey sidans svitsuvbn
N A DEFGETFGEH F"G'-'H‘I"ﬁ pizince wa dsve Jledoussq oéllisaiolni
(vi) QXA P X B QXA E { o= na—bin

(vii) ADUACUAEUABUAF Fuuad
(viii) MABMBCMCDM- :
a3 I Yodartd pmdma i e T adany wolsmn s11lsmcsd
(ix) URTUS_T'EETTR

(x) ABYABXABWABX
(x1) nscns*rnzru_,}u
(xii) NPAOQAPRAQSA
(xiii) WXAXYBYZCZADAB= ., R e o
(xiv) JKQRKLnSLnsTﬂ e

(xv) PONONHHHLHLK- Lt

] TR S
Compared to more "deductive" problms, these tasks have a«certa.i.n“opeunau

Finding the SDlUtlD‘n 13 a genume "ereative act" and involves going beyond
g

e

the evidence given (cf. a scientific thaory). The anawer is not :I'.n the
sequence itself: the problem solver himself has to bri.ng something to the

-

task. aly R HALT ey L

What defines a right answer? Hathemancauy speakmg there are
indefinitely many sequences that begin 1 2 3 4 ... bo ' "

2, Letter sequences o

See problem type K in the examples above., Notice how the problems
vary in difficulty (e.g. as measured by time taken to solve, or the number
of people failing). Some seem especially difficult: (v), (vii), (ix),
(xv), ce» (Why?). By and large, differant peo-pla tend to agree sbout
which ones are easier and which ones are harder. (ﬂhy?). : :

Notice how it is important to find the permd:.city of the aequam:a.
People usually start by doing this.




on and Kotovsky (1973) created a descriptive language for this class
nces. All that is needed is:

« idea of a repeating pattern, in square brackets [ ]
« idea of pointers into the alphabet
+ operations of NEXT and BACKWARD NEXT on the pointers

Ege (iv): ABMCDMEFMGHM ...
is: x « A/ALPH, [x nx x nx M

(ix): VRTUSTUTTU..,
ist x + R/ALPH, [U x nx T]

(xv) ¢ is: x « y + P/ALPH, [x bx x bx x by xey)

8¢ & K. find that the harder problems have more complex descriptions,
In particular, the sequences that require two pointers impose a bigger memory
load and are almost always harder than the one-pointer sequences (Why?).

(A more detailed analysis, based on thinking=aloud protocols and eye=-
movements is given in Kotovsky and Simon (1973)),

3. Industion program

8, & K. wrote various versions of a program to derive the pattern description
from the given sequences. This led to the idea of a "natural" ordering of the
difficulty of the problems, since a "stronger" version of the program (i,e. one
which solved more problems than a "weaker" one) tended to solve all the problems

the weaker one did. Indeed, it would be hard to write a program that solved
the harder problems and failed on the easier ones,

We look at a "rational reconstruction" of 8. & K.'s program, presented
by Newell (1973). The idea is to start with a broad class of hypotheses (esge
"all sequences of period 3") and then make successive refinements by repeated
comparison with the given sequence,

The trick is to allow for a large number of possibilities by using
variables @ B Y), but then deducing what the variables must be in order to
Benerate the sequence correctly. In comparing the pattern against the
sequence, there are six different situations that can occur, each of which
leads to an appropriate action:

Case 1: Pattern has a variable a, sequence has a letter which is pointed
to by some pointer x,

S "
Action: replace o by "x".
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21 Pattern has a variable ¢, sequences has a letter which 1s
"next'" after some pointer x.

Action: Repldce o by "nx x".

3: Pattern has a variable 0, sequence has a letter L.
Action: Replace o by new pointer "y", and add “y!-L;"ALPH"..

4: Pattern has a pointer x, sequence has the letter pointed to '
by xa
Action: That's fine, do nothing.

5: Pattern has a pointer x, sequence has the letter next after x.

Action: Replace "x" by "nx x".

6: Otherwike fail.

Let us see"iww ;:this‘ works out on problem (viii).

i.e. given:- '. P!J.A BMBCMCDM...

Cuess [ B A1, i.e. a sequence of period 3. (See exercise bela;su),_

Generate: «... compared to: M ...

Case 3: o must be pointer x, initialised to M.

Now have: x+M/ALPH, [x B ¥yl
Generate: M f... compared to: MA ...
Case 3: PR must be pointer y, initialised to A.

Now have: x+M/ALPH, y<A/ALPH, [x y v]
Cenerate: M A'Y... compared to: M A B...
Case 2: 7Y must be 'ny y".

‘ Now have: ‘x+M/ALPH, y<A/ALPH, [x y ny y]
Cenerate: MABMBCMCD ...
OK: we're therel

Unlike the S. & R. program, this one does not begin by findiﬁg the
periodicity of the sequence. But it has no need to, since the hypotheses
that it has period one ([al) or two([a Bl) quickly come to grief,

Exercise. Show this.

4. Discussion

a9
By working with symbolic descriptions of sequences instead of with
the sequences themselves, we have managed to cast the induction problem

into the same form as earlier problems we have looked at. As in the



ssionaries & Cannibals problem, for example, we have:
. an initial state, e.g. [a B vl,

. which has to be transformed into a goal state,

i.e. a fully-specified pattern which generates the given sequence,
. by means of a series of operators, e.g. replace "g" by "nx x".

Notice that in this case, for each kind of difference between the pattern

and the given sequence there is a single kind of change to be made to the
pattern, so we never have to undo a decision we made earlier. This means that
we can use the powerful matching technique instead of the comparatively weaker

tree—-search,

The traditional distinction between "deduction" and "induction" leads to
a certain mystique attached to the latter. I hope to have dispelled some of
this by showing how an "inductive' problem can be solved by the same means as

were used for "deductive" problems,

(a) use of symbolic descriptions, and
(b) application of operators to reduce the difference between

the current state and the goal state,

Some interesting queat1ons have to do with the hypotheses, e.g., where do they
come from? Consider:

(a) OTTFFSSE I& ?
¢
(b) SMTWTF o3.2

() BCDG J'o P Q R S ;..ﬂ
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Learning -~ 5: Production systems

1. Need for a constrained languagg

In the programs we have locked at so far, the "learning" has consisted

of the building up of some data structure distinct from the learning program
itself:

e.g. . Winston's descriptive networks i
. EPAM discrimination tree
. Samuel's weighted evaluation score

. Simon & Kotovsky letter sequence pattern

However, in order to get a wider range and greater flexibility of
learning, and to write programs that acquire the ability to do something
they couldn't do before, it will clearly be necessary to have programs
that modify and add to their existing program. For example, we might want
to write a robot program which, the first few times it is asked to assemble
a toy car, does so slowly and painfully from first principles; but after a

' yhile, we would want it to have acquired a new procedure for that particular
 task.

Unfortunately, LOGO and other "ordinary" programming languages are not
really suitable for this kind of automatic manipulation. The difficulty
is rather like trying to understand someone else's LOGO program, where all

the procedures are called just P1,P2,P3, etc., and the arguments and

variables are all called X,Y,Z! In order to modify someone else's program,
~ you have to

- know the significance of each of the procedures, arguments,
variables, etec,

*Iumdarstand the purpose of each line in a procedure

= know enough about the context to be able to make the modification
without introducing new bugs

- be able to use the EDITor effectively to change the old procedure
or define a new one.



Needless to say, it is very hard to automate this process. What we
do instead is to simplify and restrict the programming language drastically,
and to write programs in this more primitive language in a systematic way.
We will suggest a way of doing this by considering how to write LOGO
programs that have the desired properties.

2. Production systems

First suggestion. Suppose we write our program in the form:

TO MYPROGRAM
1 IF <condition 1> THEN <do action 1> AND GO 1
2 IF <condition 2> THEN <do action 2> AND GO 1
3 IF <condition 3> THEN <do action 3> AND GO 1
999 IF <condition 999> THEN <do action 999> AND GO 1
END

Notice that this is a special kind of program. Its execution takes
place in a sequence of cycles. During each cycle, just one line gets fully
obeyed. LOGO locks at the lines 1:2,3,... in turn, and finds which one
has a true <condition>. The <action> on that line is obeyed, and then LOGO
jumps back to line 1 and the next cycle begins.

This kind of program has some of the properties we want, for we are now
stating explicitly what the conditions are for each possible action to occur.
However, this is not yet enough, because we have said nothing about what the
conditions and actions are allowed to be. And if we allow arbitrary LOGO

code to be written there, then all the old problems come back. So:

Second suggestion. Suppose that we have a WORKING MEMORY, called WM, that

is used to hold all the changing information in the system. In other words,
there are to be no other variables, lists, etc. to hold data other than
those in WM. By analogy with the INFERENCE system (see handout RMB/2),

we can think of WM as a database, and we are saying that all data must be

stored in the database.

We are now in a position to place interesting restrictions on the

conditions and actions. We will say:

(a) All <conditions> consist of a pattern match against the information
in WM, rather like the ISQ pattern match in the INFERENCE system.
Call this operation MATCHES. Note that this is the only way of
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ing information from WM: we allow no FIRSTs, BUTFIRSTs, etc.

, .j‘u:timw consist of an addition to, or modification of, the
ormation in WM, analogous to ASSERT.

‘our program will lock like:

TO MYPROGRAM
1 IF MATCHES <pattern 1> THEM <WM-action 1> AND GO 1
2 IF MATCHES <pattern 2> THEN <WM-action 2> AND GO 1
3 IF MATCHES <pattern 3> THEN <WM-action 3> AND GO 1

999 IF MATCHES <pattern 999> THEN <WM-action 999> AND GO 1
END

This kind of program is usually written in the following notation:

Rule 1 : <pattern 1> = <WM-action 1>
Rule 2 <pattern 2> = <WM-action 2>
Rule 3 <pattern 3> => <WM-action 3>

Rule 999 : <pattern999> = <WM-action 999>

This is called a production system. The individual rules are called

productions or production rules.

3. An example: ANIMAL program revisited

Remember the ANIMAL program, which guesses what animal you are thinking
»f by asking a series of questions about its properties? The diagram below
shows the state of the program after it has learned about MOUSE, ELEPHANT,

MU, STORK, DALMATIAN and LEOPARD:

spotted coat ?

dangerous ?

7/ .
DALMATIAN \

STORK LEOPARD
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On page L.30 is a production system to find which of these animals
you have in mind. The notation is similar to that used for the INFERENCE

system. The easiest way to understand how the system works is to watch
it stepping through an example. Suppose we think of EMU, and suppose that |
the WM is initially empty.

Cycle 1. The patterns of neither Rule A nor Rule'B match the WM, nor |
do Animl, Quesl, or Anim2. But the pattern of Ques2 does match (since
there is no item [ASKED SPOTTED-COAT] in WM), so the system obeys the
actions of Ques2:

i

(a) It asks: SPOTTED-COAT ? {

(b) It puts into WM the item [ASKED SPOTTED-COAT]

(c) It attends to the answer: we type in [ANSWER NO], which
gets automatically ASSERTed.

Cycle 2. This time Ques2 does not match, since there now is an item
[ASKED SPOTTED-COAT] in the WM. The first rule to match is Ques4, so
as in Cycle 1:

(a) It asks: LONG NECK ?
(b) It puts into WM the item [ASKED LONG-NECK]
(e) It attends to, and ASSERTs, our answer: [ANSWER YES].

Cycle 3. This time Rule B matches, since the items [ANSWER YES] and
[ASKED LONG-NECK] are both in WM. So, taking the actions of Rule B,
the system deletes the item [ANSWER YES], and adds the item [PROPERTY
LONG-NECK].

Cycle 4. Ques3 is the first rule which matches. As before, it asks
about "CAN-FLY", and gets our [ANSWER NOJ.

Cycle 5. This time Anim4 is the first rule that matches. Obeying
the action, the system adds to WM the item [GUESS EMUI.

Cycle 6. Finally, Rule A can apply, since the item [GUESS EMU] is in
WM. It guesses "EMU!", asks us for the response, and records our typed-
in [RESPONSE RIGHT].

1M




[GUESS FANIMALIINOT [RESPONSE /RIGHTORWRONG]]
=> [SAY :ANIMAL!ICATTEND-TO RESPONSE]

[ANSWER YES][ASKED °PROP]
=> [DELETE [ANSWER YES]] [ASSERT [PROPERTY :PROP]]

[PROPERTY SPOTTED-COAT][PROPERTY DANGEROUS]
=> [ASSERT [GUESS LEOPARDI]

[PROPERTY SPOTTED-COAT]INOT [ASKED DANGEROUS]]
=> [SAY DANGEROUS ?1[ASSERT [ASKED DANGEROUS]][ATTEND-TO ANSWER]

[PROPERTY SPOTTED-COAT] => [ASSERT [GUESS DALMATIAN]]

[NOT [ASKED SPOTTED-COATI]
=> [SAY SPCTTED-COAT ?1[ASSERT [ASKED SPOTTED-COATI] [ATTEND-TO ANSWER]

[PROPERTY LONG-NECK][PROPERTY CAN-FLY] => [ASSERT [GUESS STORKI]

[PROPERTY LONG-NECK]INOT [ASKED CAN-FLY]]
=> [SAY CAN-FLY ?][ASSERT [ASKED CAN-FLY]][ATTEND-TO ANSWER)

[PROPERTY LONG-NECK] => [ASSERT [GUESS EMU]]

[NOT [ASKED LONG-NECKI]
=> [SAY LONG-NECK ?][ASSERT [ASKED LONG-NECK]][ATTEND-TO ANSWER]

[PROPERTY BIG] => [ASSERT [GUESS ELEPHANT]]

[NOT [ASKED BIGI]

=> [SAY BIG ?][ASSERT [ASKED BIGJJ[ATTEND-TO ANSWER)

=> [ASSERT [GUESS MOUSE])




(1)

(2)

(3)

ANIM3.5: [PROPERTY LONG-

5apertiea of production systems

Notice how the "facts" that have been learned are of the same kind
as the original "program" - Rule A, Rule B, and perhaps Animé.

Rule Anim3, for example, is just as much part of the Present program
as is Rule A, and it is treated in the same way.

Notice how "modular" the production system is. Each rule states a
self-contained part of the knowledge embedded in the total system.
Rule Anim3, for example, states that if the animal is known to have
a long neck and be able to fly, then STORK should be guessed.
Similarly, Quesl states that if the animal is known to have a
spotted coat, but it is not yet known whether it is dangerous, then
that should be the next thing to be found out. If we loock at the
corresponding nodes in the tree, we can see how "reasonable" these
rules are.

Largely because of this modularity, the production system is highly
amenable to automatic learning - which is why we were interested in
it in the first place.

To see how this automatic learning might happen, again it is best
to follow an example. Suppose that we think of OSTRICH instead
of EMU. The answers to all the questions will be the same, so the
system will still guess "EMU! ", but this time we tell it:

[RESPONSE WRONG]. What needs to happen ?

(a) Clearly the system must ask us for a distinguishing
property of the new animal,
i.e. it does an [ATTEND-TO DISTINGUISHING-PROPERTY],
and we tell it: [DISTINGUISHING-PROPERTY HEAD-IN-SAND].

(b) The system now has in hand all the information it needs in
order to build the new rules. If it takes all the
[PROPERTY ...ls that it has in WM, these are what specify
the incorrect guess that was made. If it adds to these the
distinguishing Property we have just given it, then those
are all the features relevant to the new animal. So the
system forms two new rules:

QUES3.5: [PROPERTY LONG-NECK][NOT [ASKED HEAD-IN-SANDI]
=> [SAY HEAD-IN-SAND ?][ASSERT [ASKED HEAD-IN-SAND]J[ATTEND-TO ANSWER]

NECK][PROPERTY HEAD-IN-SAND] => [ASSERT [GUESS OSTRICH])



and puts them just before the rule responsible for the
wrong guess, i.e. between Ques3 and Animé4.

Actually to implement these steps as part of the original production
system requires only a few extra rules, and one then has a fully=-
fledged system capable of learning about new animals. For

details of how this is done, see the paper by Waterman.

In fact, production systems of this kind were originally developed

for the purpose of modelling human problem—solving behaviour. We
will have some more to say about this next time.

Reference

D. A. Waterman (1975) Adaptive production systems. Proceedings of
the Fourth IJCAI, pp. 296-303.
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Learning - 6: Schemata

In origin, production systems (PSs) of the kind we looked at last
‘time were developed by Newell & Simon for representing human problem
‘solving behaviour. The data typically consist of thinking-aloud
protocols on tasks such as chess and symbolic logic - much the same
sort of material as GPS was applied to. PSs turn out to provide a
convenient and appropriate form to express the models of problem
solving.

‘A typical later application of Newell & Simon's ideas is illustrated

by the videotape: the use of PSs to investigate cognitive development
in children. This work capitalises on the suitability of the PSs for

modelling learning, and the ease of adding new rules.

As a psychological model, the "WM" (see last handout) can be more-or-

less identified with the psychologist's "Short Term Memory", and the
PS ditself with "Long Term Memory", i.e. our knowledge, abilities and

memories.

Parallel evocation. Although we described PSs last time as a serial
process, in terms of a special kind of LOGD program which tests the
rules one by one until it finds one whose "<condition>" is satisfied,
there is a psychologically more interesting way of regarding them.

By analogy with the Perceptron, we can think of each rule as a little
"demon", each on the look out for its own <condition>. As with the
Perceptron, all the demons are active at once. The first one whose
<condition> is satisfied yells loudly, and the system obeys the

corresponding <action>.

Thus we get the prototype for the idea of a system working on a
recognise-act cycle. More on this below. We can think of the
Perceptron-like aspects of the system as “mégaiaing" what to do
next, while the LOGO-like aspects actually perform the "acts".



Schemata

The idea of a schema as a representation of skill and knowledge:

information about something and about how to do things with it, Deuves.|

from:

(a)

(b)

e.g.
(c),

Then

(d)

(e)

' : d (e
Work of Bartlett (1932: Remembering). Schema as the essence of a
story: outline features remembered, plus any unusual characteristics
= but distorted in a normalising direction.

Piaget. Two aspects of adaptation:

(i) 5531mllat10n = 1ncorporatzon of new experience into exlstlng

structure,

(i1) Accommodation - ﬁodification of existing structure (or building

of new structure).

children's fantasy-play vs imitation.

_Wertheimer (1945, 1959: Productive Thinking). Role of naive,.
~everyday schemata in understanding formal material, such as geometry

or algebra. Hence an emphasis on difference between "rote learning"

and "real understanding".
in AIL: {$)

J.D. Becker: a concrete suggestion for learning and use of simple
schemata, but not a working program. X el
Schema is:

[k, + k, + = k ] 4

\i_,fv'*ﬁ_fe *?J

event event

i.e. "if k > then if k2 and k3. then kﬁ“ There are weights. attached
to Lndlcate the confidence of the schema (i.e. the probablllty of the

regularlty holdlng) and the crlterxailty of each of its compcnents.

The schema can be used e g. to achieve k4’ given kl
AL
Minsky: "frames" - already discussed, particularly in Vision.

High-level guidelines, but no program.

e R e i i i il




does this buy?

1) Can represent knowledge ranging from general to specific. Lots of

specialised schemata in an area where you are "expert".

Place to attach items of information where they are likely to be
found when needed.

Provides the all-important context for perception triggered by a feature.
(d) Model of cognitive skills: what you can do, as well as what you know.

(e) (Again:) Idea of a cognitive system functioning on a "recognise-act"
cycle. '"Recognition'" means the evocation of a schema, "act" means
its use. The "act" part in humans is serial, quite slow, and depends
heavily on symbolic description. The "recognise" part seems parallel

and rapid, and is poorly understood.

4. Discussion

(a) Statistical and structural learning: the need for both, e.g. to learn
significantly from a single example and also to continue improving during

extended practice.

(b) Deeper sense of "learning by experience". Our abilities are structured
in terms of things that are "familiar" to us, and the actions they lead to.
Thus our past experience, captured in schemata, serves to guide our present

behaviour.
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How to use the Computer

Experienced users need only read sections 1,5,6,8,10 and 12.
1. Administrative

The computer terminals are situated on level 2 at the East end of
the Appleton Tower. They are available on weekdays during term time,
from 9.a.m. to l.p.m. and from 3.p.m. to 9.p.m.

During those hours a demonstrator will be available, whom you can
see if you need any help. For certain hours during the week the
demonstrator will be someone from the A.I. department and will be
familiar with the LOGO programming language. At other times the
demonstrator will be from the Computer Science department, and though
he will be knowledgeable about EMAS he may not be especially familiar
with LOGO. Thus you may find it helpful to spend your 3 hours at the

terminal at a time when an Al demonstrator is present. These times
will be :

2, The terminal itself

The terminal itself is a kind of electric typewriter made by Olivetti.
The main part of the keyboard is laid out like an ordinary typewriter.
Notice the "shift" key at the left side of the keyboard, which you must
use to type some of the special characters,

e.g.  SHIFT and 2 results in "

SHIFT and 7 results in '
Notice also that there is a complete row of numerals across the top of the
keyboard. Be careful to distinguish between the letter 'oh' and the
digit "zero', between the letter 'ell' and the digit 'one' - be sure always
to type the one you really mean. : :

To the right of the main keyboard are, at the top, a few more typing
keys - notice the [ and ] - and also some blue keys for control actions,
You will be using the ones marked CR, DEL, CAN, and ESC."

Lo Still further to the right, there is a box next to the keyboard with
& couple of switches controlling the operation of the terminal.




(b)

(e)

(d)

(e)

(£)

(g)

1.8

nr

First turn on the terminal, using the switches mounted on the ;
to the right of the keyboard: turn the power switch to ON, whi
should "bring the machine to life"; then make sure the black
switch is set at FULL DUPLEX,
Press the space bar. The system should respond by typing out:
HOST:
Type in EMAS followed by the CR key
i.e. HOST: EMAS CR

(the bits you type are underlined)
The system will respond with
USER:
Type in your user code followed by the CR key
e.g. USER: ECMUL3 CR
The system will respond with
PASS:
Now type in your password, again followed by CR. Your password
will not be "echoed", in other words it will not be typed on the
paper. This is to prevent other pecple from learning your pasa-
word by looking at your listing. g
Initially your password is TERM, but there are ways of changing it
if you wish to,
If either the name or the password is invalid, the system types an
appropriate message, and you may then try the whole sequence again.

If correct the system responds (after a while) with a message like
PROCESS STARTED date time
SUBSYSTEM version date
COMMAND :
(the bits in lower case vary of course)
You are now logged into the EMAS system, and there are a number of
things you can do, which you may find out about in due course.
For the moment, though, we concentrate on running LOGO - see below.

4. Starting LOGO

(a)

(b)

When prompted by COMMAND: you simply type AI2LOGO.
COMMAND: AI2LOGO
After a pause, LOGO will report itself by:
LOGO-VERSION m.n(date) time
i
and from this point on, you will be communicating with LOGO.
Make a habit of giving as your first instruction:
1: LIBRARY “ECMI@2 “AI2




. !ﬁiﬁ'ﬁifl'load some useful LOGO procedures not normally available.
b :

You want to end the session, type: ~P,
" 1: GOODBYE g
‘This returns you to EMAS, so logoff by typing:
COMMAND : SToP
Some information will be printed out, and the terminal will be
disconnected. Remember to switch it off before you leave,
= Summary

The complete sequence is given below. The conventions used are

the things you type are underlined and bits of the sequence that

between users or with time are in lower case letters.
SWITCH ON

FULL DUPLEX
SPACE BAR

 that

HOST: EMAS CR

USER: user code

CR
PASS: password CR

PROCESS STARTED date time
SUBSYSTEM version date
COMMAND: ~AI2LOGO CR

LOGO-VERSION m.n (date) time
l: LIBRARY EcMIg2? “Ar2
LIB DEFINED

atc.

}5ur LOGO session

1: GOODBYE

STOPPED AT LINE n
COMMAND: STOP

date time continue connect time page turns charge
CONSOLE DISCONNECTED date time

SWITCH OFF
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8 F &
6. Password

Passwords are to prevent other people stealing your nuts or secrets,
or sabotaging your programs. Initially everybodys password is set to
be TERM. You can change this to any set of 4 printable characters
other than a comma. To do this log on tc EMAS and in responmss to
COMMAND :
type PASSWORD (new. password, new password)
e.g. COMMAND: PASSWORD (FRED, FRED)
Then inform Dr. Bundy what your new password is. It will be kept confi-

dential. It is necessary for our systems staff to be able to log on as
you, to keep your version of LOGO up to date.
7. Typing in lines

It is important to realise that EMAS (and LOGO) look only at

] — | — ] — | —

complete lines of input. So, every line you type in must be terminated
by CR (for Carriage Return). It is impossible for EMAS (or LOGO) to
respond to what you have typed until you have given the CR.

If you make a typing error on a line and notice it before you give
the CR, you can correct it by either of two methods:
1. If you press the DEL key (for DELETE) the system deletes the
most recent character typed in and responds with a \ followed

e —

by that character. Each time you press DEL another character
is deleted and the system responds with the deleted character.
When you start typing normally again the system responds with
a second \ .
e.g. L AG\GA\OGO is the same as LOGO

e N

"

G deleted A deleted O typed

|
i

2. You can ignore the whole line typed so far, and start over, by
pressing the CAN key (for CANcel). The system responds with
a + and gives you a new line,
e.g. TXIS LOIN Is B MIss AN *

THIS LINE IS A MESS

8. Limitations on use

Because computing is expensive there are various limitations on your
usage. The limitations are the:
(a) Rationing of Nuts;
(b) Log;on limit of 22 students;
(c) Availability of terminals
and (d) Withdrawal of Service.
(a) Rationing of Nuts A Nut is a unit of computer power (about 10p wo
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based on a function of conmnect time, page turns and cputime. You

have an allowance of 250 nuts per week. When you have exceeded
. this you will get a message

USE EXCEEDED

- ri ~ To get your allowance increased apply to Alan Bundy.
(SJ Log on limit Only 22 students may be logged on at any one time.
During the times when an AI demonstrator is on duty, AI2 students
have priority. To claim your priority, approach the demonstrator.
Conversely, you may be thrown off yourself in a non-priority period.

(e)  Availability of consoles In exceptional circumstances you can get

permission from the demonstrator to use a terminal in Alison House,
Forrest Hill or Hope Park Square.

(d) Withdrawal of Service The computer may be unavailable for a

variety of reasons. For instance, it is broken down or being
maintained. You will get the message,
NO USER SERVICE

Inform the demonstrator and get him to ask when the service will be
available again.

9. Mistakes (bugs)

If this is your first programming experience you will be surprized
how many mistakes you make - everybody is! Do not worry about them
because:

(a) Nothing you can do will damage the computer, and you will need
at least a small hammer to damage the terminal.

(b) Making mistakes is beneficial. Tt will help you to learn.
People who do not make mistakes are obviously not stretching
themselves.

(¢) If you get in a mess, ask the demonstrator. That is what he
is there for. If he decides there is a fault in the system,
you should send your entire terminal listing for the Eession,
annotated if necessary, to Rosemary Robinson, Dept. of Artificial
Intelligence, Forrest Hill.

A "bug" is a computing term meaning a mistake in your program.

L0. Interrupts

If you make a mistake and want to interrupt the computer, because

ﬂaﬁ;;‘doins something you do not want it to do, press the ESC button.

computer will respond fairly quickly with the prompt

INT: T o g

fow type Q (for Quit), this will cause the program to stop what it was

8 and allow you to start over again. It will respond with the
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prompt
1: :
If the program was typing to you when you interrupted it, this typing may
continue for a short while after you have typed either ESC or Q. The
reason in that the computer has a, half full, buffer of characters, which
it wants to empty before it responds.
The complete sequence is
interrupt with ESC
=++s++ perhaps more typeout
INT: g CR

s+ssss perhaps more typeout

1: now continue.

Some errors will (unfortunately) throw you out of LOGO and back to
EMAS. You will recognise these because the message

MONITOR ENTERED FROM IMP
followed by a lot of meaningless rubbish, will be typed on your terminal.
Interrupt as soon as possible. In answer to the INT: prompt type A
(for Abort).  EMAS will respond with:

COMMAND ;
You must now type AI2LOGO to re-enter LOGO.
11. Terminal Listing

The piece of paper with typewriting on it that comes from your terminal
is called "listimg". It is solely for your benefit. The computer keeps
its own record. You will normally throw it away except for bits on which
you have

(a) The final record of your program.

(b) The results of the program.

(c) Some particular sequence (e.g. Logging on)

* _on  thatiyou want to remember.

(d) The record of an unsolved bug.
Keep your records tidy or you will be swamped. Do not leave the listing
hanging from the terminal - it is a fire hazard!
12. Having Fun

In order to give you the feel of computing, here are some exercises
to try. First logon to LOGO and do LIBRARY ECMIg2 “A12.
1. Solve the "tea ceremony" puzzle. Do LIB “CEREMONY and then CEREMONY.
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Play a game with the computer. Do LIB “GAME123 and then GAME123
to play a matchsticks game. You can win if you play correctly!
Can you guess what makes ELL1 like things? Do LIB “ELL1 and then
ELL1 to try.
Play '"Guess the number". Do LIB GUESSNUM and then GUESSNUM,
Explain how you think this program works,
Play the "Animal" game. Do LIB “ANIMAL and then ANIMAL. Teach
the computer zoology.
LOGO objects
LOGO deals with two different kinds of objects: 1lists
and words.
Lists contain words and other lists as their elements:
[THIS IS [A LIST] [OF [4 ELEMENTS1]]
Words can be numbers or non-numbers. Numbers are written as integers:
PRAEN o 17 104
and non-numbers outside of lists are written with a prime:
'"WORD1 'CAT 'LONGERWORD,
(Words inside lists are written as themselves, as in the example
above).
SUM is a procedure which takes in 2 numbers and outputs a third.
Can you guess what the third number is? Test your guess by typing
PRINT(SUM 2 3)
What happens if you omit the word PRINT?
FIRST is a procedure which takes in a list and outputs something.
Can you guess what this is? Experiment by typing :
PRINT(FIRST [THIS IS A LIST])
Now try
PRINT(FIRST [[THIS IS A LIST] OF [3 ELEMENTS1])
Were you surprized at the result?
Repeat exercises 6 and 7 with the procedures
DIFF PROD DIV (take 2 numbers)
BUTFIRST LAST COUNT (take 1 list)
Write an essay describing your initial experiences of computing in
LOGO.
You are not expected to do all these exercises. Your tutor may
ggest some, otherwise do those that appeal to you most.
) Good luck.

ad
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In the LOGO programming language there are twoc kinds of beast:
(1) Objects these can be numbers (like 2,13, 105), words (like CAT,
or TRIANGLE2) or lists (like [ON THE MAT] or [ON [THE MATI11).
(2) Procedures these are instructions or recipes which allow us
to manipulate objects
e.g. PRINT 4

causes 4 to be printed on the terminal.

Synonyms

Not everybody uses the same notation as us. Objects are sometimes
called datastructures; data or items. Procedures are sometimes called:
programs; functions; routines; operations; commands or predicates,

A process is a procedure which is running,
What is provided?

Numbers must be non-negative; whole numbers. Words can be any
string of letters or digits, containing a letter, Lists are any
sequence of objects (i.e. numbers, words or sublists) separated by spaces
and surrounded by brackets. Lists can be as nested as you like.
e.g. [THIS (IS ([A]). [[VERY NESTED] LIST]]
Quite a lot of procedures are provided by LOGO
e.g. PRINT, FIRST, FIRSTPUT, COUNT, SUM, DIFF, NL, VALUE etc.
A complete list and definitions can be found in the reference manual.
An additional lot of procedures can be obtained by typing
LIBRARY ECMIg2 “A12
when you log on to LOGO. These ares 'LIB; LIBPAIR; ANDALSO; THAN; OR
and AMONGQ.
Exercise 2.1 PRINT, TYPE and SAY are very similar procedures. Find out
how they differ by experimenting at the terminal.
Quotes ;
. Each procedure has a name, which must be a word. To distinguish
words as objects from procedure names, words intended as objects have a
quote sign ¢ in front of them

e.g. PRINT “HI
is a procedure name, ’hl is an object.

PRINT HI

1ld cause an error, unless HI was the name of a procedure.
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Exceptions to this rule are words in lists, since these could not
possibly be intended as procedure. names,
e.g. PRINT [HI THERE] will work alright.
Procedure Calls
We communicate with the computer by typing in procedure calls

e.g. PRINT 4 is a procedure call,
The procedure PRINT prints one LOGO object (number, word or list) on the
terminal listing. This LOGO object is called its argument

e.g. 4 is the argument of PRINT in PRINT 4.
Some procedures, like SUM, take 2 arguments. Some,like GOODBYE, take
none.  Some take 3 or more. The number of arguments a procedure takes
is fixed. Arguments are always LOGO objects.

Sometimes arguments are not given explicitly but are the result of

some other procedure call.

e.g. PRINT SuM 2 3

the arguments of SUM are 2 and 3.

the argument of PRINT is 5, the result of SUM 2 3.
This nesting of procedure calls can get arbitrarily deep.

e.g. 1: PRINT FIRST BUTFIRST BUTFIRST [A B C DJ

c

The decisions about which procedure calls provide the arguments to which
procedures, are called the calligg_pattern of the procedure call., In

the above examples the calling patterns are obvious. In some examples
it can be non-obvious
e.g. PRINT SUM COUNT [A B C] FIRST [2 4 5]
When we write a procedure call we can try to make the calling pattern
clearer by putting brackets around sub-procedure calls and using new lines
and indentation for the second and consecutive arguments of a procedure
e.g. PRINT (SUM (COUNT [A B Cl)
(FIRST (2 4 51))
In fact these are not strictly necessary for the computer. Provided:
(a) The procedure name comes first, followed by its arguments,
(b) The computer knows how many arguments each procedure takes;
(¢) The computer can distinguish between procedure names and objects;
it can always fix the calling pattern in a uﬁique way.
Can you do it?
Exercise 2.2 What will the computer type out if you type in each of the

following commands?
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PRINT FIRST [A B C]
PRINT COUNT FIRST [[UP DOWN] [NORTH .SOUTH EAST WESTI]
PRINT BUTFIRST FIRST BUTFIRST [[X]1 [Y 21 [U Vv wl]
PRINT SUM COUNT [1 2 31 FIRST [1 2 3]
PRINT SUM LAST FIRST [[2 11. [4 31] FIRST
LAST [[3 4] [1 211
PRINT DIFF FIRST BUTFIRST [10 9 8 71 COUNT
BUTFIRST BUIFIRST [1 2 3 4 5 6]
Now logon to LOGO and check your answers.

Evaluation

We communicate with the computer by typing procedure calls at the
terminal. FEach procedure call is evaluated by the computer which causes
LOGO procedures to be run on LOGO objects. The evaluation process is as
follows:

1. The computer works along the line from left to right.

2. When it sees an unquoted word it knows this must be a procedure

name. The definition of this procedure is recovered from the
computer's memory. It decides how many arguments the procedure

takes, and looks further along the line to find out what these
are. - The procedure is then run on these arguments and the
result is stored in memory.

3. VWhen it sees a number, list or quoted word, it knows that these
must be the arguments of some procedure. These LOGO objects

are stored in a special place where the procedure can find them
when it runs,
User Defined Procedures

In LOGO you can define your own procedures and add them to the ones
already provided. For the mechanics of doing this see the handout en-
titled "How to define procedures',

Simple Procedures

Suppose, we have a longish message we often want to have typed out on
the terminal. We can define a procedure to do this.
. e.g. TO HELP

10 PRINT [TO LOGOFF TYPE]

20 PRINT “GOODBYE

30 PRINT [THEN TYPE]

40 PRINT 7STOP

END

The words TO and END mark the beginning and end of the procedure definition.
the first line
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TO HELP
is the title line. It consists of TO followed by the procedure name,

HELP.  The middle 4 lines are the body of the procedure. Each line starts
with a number. When the procedure is called, the lines are executed in
numerical order. If they have bugs in, procedures can be edited by in-
serting, changing or deleting lines. A line can be inserted between
lines 20 and 30 by givipg it a number between 20 and 30
e.g. 25 PRINT [WAIT FOR THE PROMPT COMMAND ]

Exercise 2.3 Write a procedure called HELLO which will type out

HELLO

[HOW ARE YOU]
Procedures with arguments

Procedures like HELP and HELLO always behave in an identical way
each time they are called. We would like to be able to write procedures
like PRINT and SUM which are given as arguments objects which they man-
ipulate.  Such procedures behave differently according to the object they
are given. Procedures with arguments are defined in a similar way to
simple procedures except that they involve words (called parameters or
input variables) which stand for the arguments,

e.g. TO PRINTENDS “LIST

10 PRINT FIRST (VALUE “LIST)

20 PRINT LAST (VALUE “LIST)

END
LIST is a parameter in the above example. In the title line we put all
the parameters just after the procedure name, So LOGO knows how many
parameters there are and what their names are. VALUE “LIST will give
the particular object which is input at any one time. The effect of
typing

PRINTENDS [SUNDAY MONDAY . . . . . . SATURDAY]
will be that

SUNDAY

SATURDAY
is printed on the terminal.

VALUE LIST gives the list [SUNDAY ...... SATURDAY]
Here is another example

TO PRINTTOTAL “NUMI “NuM2

10 PRINT (SUM (VALUE “NUM1) (VALUE “NUM2))

END
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2.4 What would be the effect of typing
(a) PRINTTOTAL 2 3
(b) PRINTTOTAL (SUM 2 3) 1
m what are VALUE “NUM2 and VALUE *#NUML1?
2.5 Write a procedure which takes a list as argument and prints
number of elements in it (use COUNT).
ults and Effects

In LOGO there is a sharp distinction between two different aspects

LI a procedure's behaviour, namely its result (or output) and its effect

(er side-effect). To understand the difference consider the LOGO line

jrw PRINT FIRST [A B C]

~ The job of FIRST is to take one LOGO object, [A B Cl, and calculate an-
other, A . "A" is the result of this application of FIRST. It is stored
away in a special place, where it is later collected to be the VALUE of
the parameter of PRINT, LOGO procedures always produce exactly one result,
and this must be a LOGO object. Some procedures, like PRINT, are executed
mainly for their effect, which in this case is to cause the terminal to
work and start printing characters. Other effects might be to cause the
computer to read some characters from the teletype or to log you off LOGO
(e.g. GOODBYE). PRINT does produce a result, which is identical to its
input, but this is very rarely used.

LOGO procedures which are executed mainly for their effect (like
PRINT) we will call commands. LOGO procedures which are executed mainly
for their result (like FIRST), we will call functions.

Note that the leftmost procedure in a line willluaually be a command
and that the rest will be functionms.

Exercise 2.6 Classify the following procedures into commands and functions:

SAY; LAST; COUNT; SUM; DIFF; NL; VALUE; FIRSTPUT.

Little MEN |
It is sometimes useful to think of each call of a procedure as a

"little man".
e.g. [A B Cl=+ Mr. FIRST

A <+
itjuugnts to the little man go in through his eyes, Results come from
his mouth, Other things he does, like effects, are achieved by other

drgans. We can use this amalogy to visualize what happens when, say,
PRINT (StM 2 3)




is evaluated

Mr. PRINT Mr. SUM

Procedures which produce results

So far all the procedures we have defined (HELP, PRINTENDS etc.) have
been commands. By using the command RESULT we can alsc define functioms.
RESULT takes 1 input and stores it in the special place. For instance,
suppose we wanted to write a procedure to find the second element of a
list, we could write

TO SECOND “LIST
10 RESULT FIRST BUTFIRST VALUE “LIST
END
Exercises 2.7 Define a procedure FOURTH for finding the fourth element

of a list.
2.8 Define a procedure SUM3 which takes 3 numbers and outputs

their sum.

Sub-procedures

We have seen plenty of examples in procedure definitions where one
procedure calls another
e.g. TO THIRD “LIST
10 OUTPUT FIRST BUTFIRST BUTFIRST VALUE “LIST
END
OUTPUT, FIRST, BUTFIRST and VALUE are called sub-procedures of THIRD.
We can use user—defined procedures as sub-procedures.

e.g. 10 OUTPUT SECOND BUTFIRST VALUE LIST
L
user defined

Variables and Assignmant

It is often useful to have variables in addition to the parameters.
For instance, as place holders for partial results. Consider the follow-
ing arithmetic procedure , DIFFSQ, for calculating the difference of 2
squares.
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A it TO DIFFSQ ‘N1 /N2
' 10 NEW [S D]
20 MARE ‘s (suM  VALOE ‘N1 VALUE “N2) !

30 MAKE “D (DIFF VALUE ‘N1 VALUE ”N2)
40 OUTPUT (PROD VALUE ‘5 VALUE “D)

END
":“8*10 declares that

; S and D are to be new local-variables within the

procedure DIFFSQ. S and D are very similar to the parameters N1 and N2
~ except that they are not assigned VALUE's when the procedure is entered.
The VALUES of S and D are assigned (we say S and D are bound) in lines 20
and 30 by the command MAKE, MAKE takes 2 arguments,
and assigns the object to be the VALUE of the word,
e.g. after MAKE s 3

then PRINT VALUE 's

causes 3 to be printed.

a word and an object

Of course we could have written DIFFSQ without using local variables,

but it would have been a little difficult to read. We will soon meet

examples where they are not so easy to dispense with,

The variable declaration (e.g. NEW
statement

[N1 N21) and the assignment
(e.g. MAKE “N1 8) are not required for parameters (e.g. N1

and N2). They are implicitly made when the procedure is entered.

When the procedure is exited (i.e. when it is finished) the assign-

ments of the parameters and local variables are cancelled, e.g. outside

of DIFFSQ the VALUES of N1, N2, S and D are undefined. This is important

because it allows the same variable name to be used in different pfocedures

which call each other. Consider the procedure THIRD

TO THIRD “LIST

10 OUTPUT FIRST BUTFIRST BUTFIRST VALUE “LIST

END

It is vital that the 2 different versions of BUTFIRST have different ideas
about the VALUE's of their parameter (called say, L.).

following "little man" diagram.

@\KCDJ——@\KB c m@\[ascn;@

Mr. FIRST Mr. BUTFIRST1 Mr. BUTFIRST2
thinks thinks
VALUE’L is [B ¢ D] VALUEL is [A B C D]

Consider the

Mr. VALUE




t each little man thinks are the VALUE's of his parameters and local
 variables is called conceptual cloud

Principle of Reincarnation Each time we call a procedure

we get a new little man with his own conceptual cloud.

Abbreviations

Some of the LOGO procedure names are a bit longwinded, e.g.,, BUTFIRST,
FIRSTPUT. We want to minimise typing as much as possible, so each of the
LOGO procedure names has an abbreviation.

e.g. The abbreviation of
FIRST is F
BUTFIRST is BF
FIRSTPUT is FPUT
For a complete list see the reference manual,

There is also a facility for creating new abbreviations of LOGO or
user-defined procedures. The command ABBREV is used. It takes as input
the old procedure name and the new abbreviation.

e.g. Calling ABBREV /LONGPROCEDURENAME “LPN
will make LPN the abbreviation for LONGPROCEDURENAME

There is a special kind of abbreviation for VALUE. 1If VALUE is
being called on some quoted word, VALUE is omitted and the quote is re-
placed by a colon.

e.g. :FRED is an abbreviation for VALUE *‘FRED
Infix Procedures

Some mathematical function names are usually written between the
parameters rather than in front of them.
e.g. we usually write 2 + 3
rather than SUM 2 3

+ is called an infix function.

Many LOGO functions have an equivalent infix form.

i.e. Function Abbreviation Infix Form
SUM sSuM +
DIFFERENCE DIFF =
PRODUCT PROD *
QUOTIENT QuoT /
LESSQ LQ <
LESSEQUALQ LEQ <=
GRTRQ GQ >
GRTREQUALQ GEQ -

EQUALQ EQ =
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Take care when you use infix function, because the calling pattern
can be ambiguous.

e.g. FIRST :LIST1 = FIRST :LIST2

11 be interpreted (parsed) by LOGO as

FIRST (:LISTL = (FIRST :LIST2))

Ziﬁich will result in an error.
of brackets and this will remove the ambiguity.
e.g. (FIRST :LIST1) = (FIRST :LIST2)
will be parsed correctly.

When using infix form always use plenty

For similar reasons always put brackets around negative numbers
e.g. =23 )
Exercise 2.9 The following is an uncompleted table of LOGO functions.

Fill in the rest of the table by performing experiments at the terminal.

Name of Number Type of Input
function of inputs Result
Number| Word | List
FIRST 1 X X v" | First element of list

- LISTQ

RINT FIRST 87
~ NON-LIST ARG
INT FIRST WORD
 NON-LIST ARG FOR LIST FN FIRST -
RINT FIRST C[THIS IS A LIST3 '

FOR LIST FN FIRST - 87

WORD
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How to define a procedure

The Procedure
To define a procedure
10 design the procedure and write it on paper
20 type it into the computer
30 show it
40 save it
50 test it
60 If procedure works perfectly then stop
70 debug it
80 edit it
90 go back to line 30
End
Designing Procedures

Analyse the problem and break it into parts, then analyse these parts.
Continue this process until all the problems are trivial. You should now
have a tree structured plan

main problem

trivial problems

Always work from the top down., You will gradually develop intuitions
about what is trivial at the lower levels and about how to break problems
down.
Write the top level procedure first and its subprocedures next.

The top level procedure can be tested before the subprocedures are
written, by using the CALLUSER facility. For instance,suppose you
needed a subprocedure ISITANENGLISHWORDQ, which checked whether words
were in a dictionary. This would obviously be time consuming to write.
However, we can define it as follows:

TO ISITANENGLISHWORDQ ¢ WORD

10 CALLUSER

END
When this procedure is called processing is temporarily halted and you
get a message and the prompt RESULT: . You now type in the result

ol



i,

P,18

. fo 8‘1m_.‘."ju
the procedure should return, this is evaluated a :

e ' apd ey
1 continue.

- 30 S!Ma
~ Find a procedure which does a similar task to the WW,

id use it as a model.

J0B TIIOSSIND 8¢
Keep your procedures short i.e. less than 9 lines long. o
Use mneumonies for procedure names and variables. ABBREViate them

ards if necessary. £y~

ng in the procedure

Logon to LOGO and type the title line of your procedure

E e.g. TO SECOND “LIST

- After this, the "prompt" that LOGO gives you at the beginning of each line
changes from its usual "1:" to a "&:". This reminds you that you are
';nfining a procedure. If there is a mistake in the format of the title
line you will get an error message. Try again.

Each line of the procedure must begin with a line number. Lines
can be typed-in in any order, and will be stored not necessarily in the
order you type them but in the order of their line numbers. If you
forget the line number you will get an error message. Try again.

In order to change a line already typed, merely type a new line with
the same line number. To remove a line, say line 30, type

&: DELETE 30

To type in a command that is longer than a single physical line,
towards the end of the first line type @ CR. LOGO will respond with
"C:" and you can then type in the continuation.

When you have finished defining the procedure, type

&: END
and the prompt will then revert to "1",
e.g. 1: TO SECOND “LIST
&: 10 RESULT FIRST BUTFIRST :LIST
&: END
1: PRINT SECOND [A B CJ.

When you are defining (or editing) procedures the lines you type in

not run, they are merely stored away in the computer's memory for
e reference ,
aving Procedures

If you are writing a program you do not want to have to retype all
' Procedures every time you use LOGO. So there is a way to get LOGO
to remember your procedures at one session, so that you can use them

@in at a later session. Procedures can be stored in a "file" by
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y with storing objects in a file drawer. You can have several
: it files - one for each program you are writing,

_ Ihe procedure GETFILE is used for creating a new file or getting
:ih old one. It takes as input the name of your file and makes this
the currently active file.

e.g. GETFILE

L

The procedure SAVE is used to save procedures on the currently
active file.

e.g. SAVE “SECOND '
stores the procedure SECOND on file JIM.

e.g. SAVE [SECOND PRINTENDS HELP] . J
stores all three named procedures. :

There is also a useful command , J

1: SAVENEW
which saves all procedures which have been typed in or EDITed, and not
yet SAVEd.

FORGET can be used to remove procedures from a file:

e.g. 1l: FORGET “PRINTENDS
OR 1: FORGET [SECOND HELF]
To recover the procedures at a later session, we first GETFILE the
relevant file, and then use LOAD:
e.g. 1: LOAD “GECOND
: 1: LOAD [PRINTENDS HELPI
or more simply
1: LOADSAVED
which loads all the procedures in the current file.

You can access someone else's file using the command LIBRARY. You
must give LIBRARY the other users code number as well as the name of the
file.

e.g. LIBRARY “ECMIg2 “AI2
will load all the procedures in Alan Bundy's file AI2.
Showing Procedures

To get a procedure typed on the terminal use the procedure SHOW.
e.g. SHOW ”SECOND will type procedure SECOND
SHOW [SECOND PRINTENDS HELP] will type all 3
SHOWALL - will type all procedures currently loaded
SHOWTITLES will type just the titles
Testing Procedures

If you are an inexperienced programmer your procedures are much more
likely to be wrong than right.
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‘To test a procedure call it on some of the arguments you expect it
i;saneiving in practice. Try a wide range of types of arguments.
mot forget "awkward" cases like: the empty list; especially long liﬁtn;
a ve numbers etc.

_-’!bu will notice a bug because either the procedure does not produce

result you expected or you get an error message.

;ging Procedures

There are two types of bug: syntax errors and run-time errors.

Syntax errors are ungrammatical LOGO procedure calls. They always result

| error messages, either when the procedure is typed in, or when it is

m. Run-time errors come from procedures which do not do what you ex-

- pected them to. These can sometimes give error messages if they cause

@ procedure to receive an argument it is not equipped to deal with.

. If you get an error message, make sure you understand what it means,

) and what typical kinds of bug cause it. Ask the demonstrator if necessary.
If the error message tells you the line in error examine this line and
possibly one or two lines before.

Make sure you have a listing of the most recent version of the

procedure at fault.

Follow the execution of the procedure through with your finger, playing
"devils advocate".

Execute each line of the procedure in turn. Does it work as expected.
Make sure lines containing infix. procedures are being interpreted properly.

Sometimes the error will leave you in the middle of executing the pro-
cedure which failed. You will recognise this because the prompt will
change from 1: to 2: , (or 2: to 3: etc.). You can now PRINT the
~current VALUES of the local variables and parameters. Are they what you

:
expected? You can cause execution of your own procedures to be suspended
by inserting the command BREAK into them. CONTINUE will cause the pro-
cessing to continue, QUIT will cause it to be abandoned.

If you want a record of which procedures are called and by whom,
‘before the error, call the command TRACE on each procedure you want
- recorded, and then call your procedure

e.g. TRACE [SECOND HELP]

‘Using FULLTRACE instead will give the VALUES of parameters on entry, and
result on exit, To stop procedures being TRACEd call UNTRACE on them.

> not TRACE too many procedures, or you will be swamped.

To see whether a procedure reaches a certain point edit a PRINT or
command into that point.

For further advice see the reference manual or ask a demonstrator.
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g Procedures
- To change a procedure which has already been defined call the command
)IT on that procedure. You will get the prompt &: and will be back in
tﬁa mode in which you defined the procedure.
e.g. EDIT “SECOND

&: 5 PRINT “ENTER

&: 15 PRINT [TOO FAR]

&: END

b AL

Exercises

3.1 Type in definitions of HELP, SECOND and PRINTENDS; and then
try them out.

3.2 LIB ‘BUGS will get you some procedures with bugs in them.
Can you correct them?

3.3 Make sure you understand the procedure FIRSTPUT. Use it to
define a procedure BACKTOFRONT which outputs a list with the
last element moved to the front,

©.g. BACKTOFRONT [A B C D1 is[D A B CJ.

3.4 Write a procedure QUERY which switches the first two elements

of a list, so that

PRINT QUERY[BILL CAN FIX IT)
gives

[CAN BILL FIX IT].
Hints: What gives the list [FIX IT1? What gives the list
[BILL FIX ITI?
What is QUERY [DOGS LIKE CHEESE]? Or QUERY [THE CAT CHASED
THE SQUIRREL]? How would you set about improving the procedure
QUERY?
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Control Structures

Introduction

~ So far all our procedures have consisted of a simple sequence of

instructions, to be obeyed in order. Sometimes we will want the order

&0 be variable according to the circumstances,or we will want some
instructions to bé repeated several times.
‘Conditionals :

For instance suppose we wanted to amend the procedure SECOND so
that it produced an error message if its input was not a list. We can
do this with the conditional IF.....THEN.....ELSE..... .

i.e. '

TO SECOND LIST

10 IF LISTQ :LIST THEN RESULT FIRST BUTFIRST :LIST
ELSE SECERR :LIST

END

TO SECERR PARA

10 SAY [NON LIST PARAMETER FOR SECOND]
20 PRINT ’PARA

END

The general form of the conditional is
IF condition THEN instructionl ELSE instruction2

It is a funny kind of procedure. 1It's name is split into 3 parts,
IF, THEN and ELSE, and distributed between the 3 arguments, The first
argument must return as résult either the word TRUE of the word FALSE
Procedures like this are called predicates. !
‘Examples are:

EQUALQ :A :B - tests whether :A and :B are equal

ZEROQ :NUMBER - tests whether the :NUMBER is zero

EMPTYQ :LIST - tests whether the list is empty

LISTQ :THING - tests whether the :THING is a list

WORDQ :THING - tests whether the :THING is a word

NUMBERQ :THING - tests whether the :THING is a number
We will adopt the convention that predicate names, even user defined
ges, end in a Q (for Question).

8th October, 1975 .-
AB/8.
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Normally procedures evaluate all their inputs before they are

called themselves. However, when

IF condition THEN instructionl ELSE instruction2

tfI'I
i
..

"condition" returns TRUE

is called only "condition" is evaluated. If
"instructionl" is evaluated. If "condition" returns FALSE, "instruction2"
is evaluated, otherwise an error message is called.
There is a shortened version
IF condition THEN instruction
RESULT not only causes its argumeiit to be stored in the special place
for results, it also causes the current procedure to be exited., So an
alternative form for SECOND would be
TO SECOND LIST

10 _IF LISTQ :LIST THEN RESULT FIRST BUTFIRST :LIST

20 SECERR
END
Exercises 4.1 Write a version of SECOND which does not check that it's p

argument is'a list,~but-does check that it is at least 2 elements long.
*4,2 Write a version of SECOND which performs both checks.
Linking Procedure Calls Together
The arguments of IF-THEN-ELSE- , like the argumentsof any other

procedure, must be a LOGO object or a single procedure call. However,

if a conditional test succeeds we often want to do a sequence of instruct-

ions.

Y —

e.8.

IF SUNNY :DAY THEN HANGOUT :WASHING
WEED :FLOWERBEDS

SUNBATH
As it stands this is illegal LOGO syntax. What we need is a way of

linking together the last 3 LOGO procedure calls into one procedure call,
This is provided by the infix command AND. AND causes the procedure
calls it links to be evaluated simply by having them as arguments, but
it does nothing further to them.
The following is legal LOGO syntax.
IF SUNNY :DAY THEN HANGOUT :WASHING

AND WEED :FLOWERBEDS

AND SUNBATH
Exercise 4.3 Write a version of SECOND which prints out a message
""SECOND CALLED SUCCESSFULLY" whenever it is called successfully,
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!Elgtition

1 Suppose we wanted to repeat an instruction several times., It
_would be tedious to have to write the instruction several times. Im-
stead we can use the command REPEAT.
e.g.
TO LOVE
10 REPEAT 3 SAY [I LOVE YOU]
END
This will print "I LOVE YOU" 3 times.
We can REPEAT things a variable number of times by having the first
input of REPEAT be a procedure call or variable.
e.g.
TO MUCHLOVE NUM
10 REPEAT :NUM SAY [I LOVE YOU]
END
MUCHLOVE 1000 will now print "I LOVE YOU" 1000 times etc. |

Exercises 4.4 Write a procedure, PRIDE, which prints
COMPUTERS NEVER MAKE

MISTAKES

MISTAKES

MISTAKES

MISTAKES

4.5 Write a procedure which prints 3 times

I LOVE YOU

VERY MUCH
ﬁarnigg You now have the facility to define procedures which may go on
for a long time.< Before running one, make sure you understand how to
interrupt (with ESC) and QUIT. Otherwise it will be very boring for you
waiting for the procedure to finish and you will needlessly use up your
allocation of nuts. There is a facility to prevent this kind of accident
called the EVALIMIT, This will prevent you doing too much processing,
by setting a limit on the depth to which you can have sub-procedures call-
3;; each other. EVALIMIT is currently 500. You can increase or de-
ecrease this with the command SETELIM, which takes 1 argument, the néew limit.




g down lists

We will sometimes want to do something to each member of a list in
turn. For instance PRINT each member of the list on a new line, The
easiest way to do this is with the command APPLIST.
i.e. 1: APPLIST [SUNDAY MONDAY ........SATURDAY] “PRINT

SUNDAY

MONDAY

SATURDAY

APPLIST applies the command PRINT to each member of the list in
turn. Since PRINT always prints it's arguments and then does a new
line, a new line is inserted between every member,

The second argument of APPLIST can be the name of any system or
user defined, one argument, procedure (though it is usually a command).
Sometimes we do not have the appropriate command already defined, and we
do not need it except for this APPLIST. In this case the definition
can be made implicitly in the second argument to APPLIST. For instance,
suppose we wanted a procedure which printed TRUE for each word in a list
and FALSE for e#ch list or number. It could be done as follows:

1: APPLIST [JOHN 23 MALE] [PRINT WORDQ EACH]

TRUE

FALSE

TRUE
For each member of the list, [JOHN 23 MALE]l, EACH finds. the VALUE of .
that member, WORDQ-works on that VALUE returning as.result. TRUE or FALSE
and PRINT prints that result.

[PRINT WORDQ EACH] is an alternative to some procedure name, say
/F00, where FOO is defined by

TO F0O ARG
10 PRINT WORDQ :ARG
END

Corresponding to the command APPLIST there is a function MAPLIST.
This takes a list and a function name and produces as a result the new
list obtained from applying the function to each member of the old list

e.g. 1: PRINT MAPLIST [JOHN 23 'MALE] “WORDQ

[TRUE FALSE TRUE]
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As in APPLIST the second argument of MAPLIST can be a procedure
call in the form of a list.
e.g.
1: PRINT MAPLIST [1 2 3] [SUM 1 EACHI]
B
igerciaes 4.6 What would be the effect of typing
1: PRINT MAPLIST [1 O 31 ZEROQ
1: APPLIST [JOHN 23 MALE] [PRINT NUMBERQ EACH]
1: PRINT MAPLIST [1 2 3] [PROD 2 EACH]
4.7. Write a function, DOUBLELIST, which takes a list of
numbers and returns a list with each member doubled.
"éonditional Loops

Sometimes we cannot say in advance how often we would like to repeat

a command, we just want to go on repeating it until some goal has been
achieved (like hitting a nail repeatedly until it has sunk right into the
wood). This facility is provided in LOGO by the construction, - Lol
.« WHILE condition THEN instructionm.
e.g.

WHILE OUT :NAIL THEN HIT :NAIL
WHILE combines the ideas of conditionals and repetition. As in IF-THEN-,
the condition is evaluated., If it returns TRUE the instruction is eval-
uated. Then the process is repeated until the condition returns FALSE.
Clearly evaluating the instruction should have some effect upon whatever
the condition is testing or this process will never stop.
We can use the WHILE-THEN- procedure to define a procedure
SUMFROM1TON which adds up all the numbers from 1 to some number N, say.
e.g.

1: PRINT SUMFROMITON 2

3 (1.8, 142 )

1: PRINT SUMFROMITON 5
15 (i.e., 1+2+3+4+5)

TO SUMFROMITON <N

10 NEW [TALLY TOTAL]

20 MAKE “TALLY 1

30 MAKE “TOTAL 1

40 WHILE NOT EQUALQ :TALLY :N
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THEN MAKE “TALLY SUM :TALLY 1

AND MAKE “TOTAL SUM :TOTAL :TALLY
50 RESULT :TOTAL
END

Note the use of local wvariables

(a) to keep a running score (TOTAL)
(b) to count how many times something was done (TALLY)
Note also the use of AND to enable us both te do something and to record
we did it, each time round the loop. It is nearlj always necessary to
+ use AND in WHILE loops.
Exercise 4.8. Write a procedure SUMOFLIST which adds up all the numbers
in a list of numbers
e.g.
1: PRINT SUMOFLIST [5 7 3]
15
(a) Using APPLIST
(b) Using WHILE- THEN-
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190 -
Recursion

ing problems into parts

So far most of the problems we have tackled have been fairly easy. It
been possible to break the problem down into a short sequence of
tructions,each of which can be written with the LOGO procedures cur-
rently available. Sometimes these instructions canmot be written using
existing procedures. Then writing these instructions becomes a new

- problem and we begin to build up a hierarchical structure of procedures
e.g.

TO SINGSONG

10 SINGVERSEL

20 SINGCHORUS

30 SINGVERSE2

40 SINGCHORUS

etec.

END

TO SINGVERSEL
10 SAY [RICH GIRL WEARS A ,....... ]
RO MBAF TIOOR T GYRe™, UG RS

+ END

TO SINGCHORUS
10 S5AY [DINAH DINAH .. .. 1]

END

ete.
This device of "divide and conquer", the breaking of a problem into
s, is one of the main weapons of program writing., We will be develop-
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t further in our "little man methods".

~ Until now the break down of the task has been strictly hierarchical.

e.g.
main procedure - SINGSONG :
sub-procedures - SINGCHORUS SINGVERSElL  SINGVERSEZ
sub-sub-procedures - Y SAY SAY

In fact there is nothing in LOGO to stop one of the sub-procedures
or sub-sub-procedures being the same as the main procedures. When this
happens it is called recursion.

e.g.

SINGSONG

SINGSONG SINGCHORUS
SINGSONG (Say)

In the rest of this handout we will be exploring this possibility;
seeing how it is possible and when it is useful,

Many of the examples we will be using could also be done using
REPEAT, APPLIST, MAPLIST or WHILE. For expository purposes we will be
ignoring these alternatives in this handout. When designing your ownm
procedures you should choose the alternative which reflects the way you

naturally break down the task. Recursion is a very powerful programming
device. It can always replace, REPEAT, APPLIST, MAPLIST and WHILE, but
not vice versa., . E

Indefinite Repetition

Using REPEAT we can repeat an instruction a finite number of times,
but suppose we want to go on repeating something indefinitely? We can
do this using recursion.

Consider, if we tell LOGO how to LAUGH:

TO LAUGH
1¢ PRINT 'HAHAHA
2@ PRINT 'HOHOHO
END
If we use this procedure
1: LAUGH
then LOGO will laugh just once
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But suppose we want LOGO to laugh again and again and again? We
could try

TO LAUGHALOT

1¢ LAUGH

2¢ LAUGH

PR TRER

~ but these do not look promising because (a) it's a nuisance to have to

write out all these LAUGHs, and (b) it still doesn't make LOGO laugh

indefinitely.

. Instead, try this:
TO KEEPLAUGHING
1¢ LAUGH

2¢ KEEPLAUGHING ( KEEPLAUCHING calls ié;;;;::)

END

This has the desired effect:
1: KEEPLAUGHING

HAHAHA

HOHOHO

------ (indefinitely)

he "little man" method

We give two ways of undérstanding how KEEPLAUGHING works. We've
“_;}ified the task from the one large problem given to: a small

f;ien we can solve + another large problem., We were asked to produce:
| HAHAHA )

k HOHOHO )

HAHAHA )
indefinite number of times



e tackle it by breaking it into two parts:

i
-

HAHAHA ) i
HOHOHO ) (A) produce a single laugh i
HAHAHA ) ]
HOHOHO )  (B) produce the rest of the laughs ]

_____ ) (an indefinite number)

1
i
I
1
1
—r
—

But now we can easily write the procedure KEEPLAUGHING, since task
(A) is what LAUCH is designed to do,

KEEPLAUGHING is meant to do!

procedure.

and task (B) is identical to what
So these become lines 1¢ and 2§ of the

i
|

The second way is to think about the "little men" involved. We

have only two kinds of little man here, LAUGH and KEEPLAUGHING, but there
may be many of each kind:
. Mr. 1LAUGH

Mr., KEEPLAUGHING Mr. LAUGH

Mr UGH
10 LAUGH Mr. KEEPLAUGHING

20 KEEPLAUGHING \.’

Mr. KEEPLAUGHING

10 LAUGH /
20 KEEPLAUGHING

10 LAUGH /
20 KEEPLAUGHING /
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we type KEEPLAUGHING we create 1.m.l, who in turn creates =
| 1.,m.2 and asks him to "do his thing", then (line 2@f) creates
d asks him to "do his thing". So l.m.3 first creates l.m.4-———,

- We have here a powerful method of tackling problems involving repeti-
’ We'll see soon that it's only half of an even more powerful method,

et's say:

(Second Half of) Little Man Method

B, Can I break the task I'm given into two (or more)
parts, such that

(i) I can cope with one of the parts myself, and

(ii) I can give the other part(s) to someone else
to deal with?

ﬁ sure to understand how this applies to the case of KEEPLAUGHING.

m 3 rcises 5.1 Write a procedure, STORY, which prints out the following
monologue:
Pt IT WAS A DARK AND STORMY NIGHT
AND THE CAPTAIN SATD TO THE MATE
TELL US A STORY

AND THE MATE BEGAN

IT WAS A DARK AND STORMY NIGHT

ensassessannannens GEC,

: 5.2 Suppose you have procedures SING and DANCE. Define a
Mn SINGANDDANCEFOREVER which will SING, then DANCE, then SING,
‘her DANCE, etc.. Define appropriate procedures for SING and DANCE,
ad try them out.
ther example: COUNTUPFROM
Suppose we want to write a procedure which behaves as follows:
1: COUNTUPFROM 1¢ or  1: COUNTUPFROM 127

10 127
11 128
12 129
19 138

14 131
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We can start with
TO COUNTUPFROM # GIVENNUMBER
Try same method as before. Break up the whole task into two-partdg“:
1: COUNTUPFROM 127

127 ) This line produced by PRINT 127

128 ) "
129 )

130 )

131 ) The rest of the lines produced by

P COUNTUPFROM 128

-—)

So, in terms of the Little Man Method,

(i) the subtask we can do ourselves is to print the given number:
1¢ PRINT :GIVENNUMBER

(ii) the rest of the task is given to someone else to do:
2¢) COUNTUPFROM SUM :GIVENNUMBER 1

i.e. one greater than the given number
So, TO COUNTUPFROM /GIVENNUMBER
1¢ PRINT :GIVENNUMBER
2¢ COUNTUPFROM SUM :GIVEN NUMBER 1
END |

Notice that each COUNTUPFROM little man has his own conceptual cloud:
:GIVENNUMBER
is 127
= 55" P
b JHIZ2
127 7

dad =

10 PRINT ... 128w
20 COUNTUPFROM

10 PRINT ... ‘/'129/_’ *

20 COUNTUPFROM
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ARNING Before trying these procedures on LOGO, ‘make
and about Interrupts. :
minated recursion: COUNTDOWN r 5

Try an example similar to the earlier procedure COUNTUPFROM but ﬂm
‘an important difference: ——
1: COUNTDOWN 1¢

| O~ MW Lo~ e WD
E s
3
=

1: SHOW COUNTDOWN i
How can we write COUNTDOWN using recursion? Most of it is easy, it
analogous to COUNTUPFROM. Applying the (second half of the) Little Man j
Method, we break the task into two parts, and realise that in the call 5|
of COUNTDOWN 1¢ above, the "1¢" in the typeout is printed directly by
the COUNTDOWN little man, whereas the rest, 9 8 7 etc., are printed by |
a recursive call on COUNTDOWN 9. This gives us our first approximation: |
TO COUNTDOWN ’m |
10 PRINT :NUMBER '
20 COUNTDOWN DIFF :NUMBER 1

END

But when we try this we get

1: COUNTDOWN 3

3

"\

arly, there is nothing to stop COUNTDOWN continuing indefinitely. After




"f:cre, it will not print BLASTOFF and stop because we have nowhere
4 it to. It's easy to correct this omission:
TO COUNTDOWN /NUMBER
1¢ PRINT :NUMBER
—> 15 IF ZEROQ :NUMBER THEN PRINT ‘BLASTOFF AND STOP
29 COUNTDOWN DIFF :NUMBER 1
END

This will now work correctly. ZEROQ is a predicate which tests whether
Or mot a number is zero. Make sure you understand the little man
structure of a call on COUNTDOWN. Here is a complete diagram of the

little men for COUNTDOWN 2. This time we have added explicitly a line
to represent each l.m. saying "done':

:NUMBER is 2
)
2 Mr. COUNTDOWN
(4)
2 —p
Ilzll
10 PRINT ... A
15 IF ZEROQ ...
20 COUNTDOWN ... C :NUMBER is 1
' )
2 Mr. COUNTDOWN
(B)
1~
1l1ll
10 PRINT .7~
15 IF ZEROQ ...
"done'e— 20 COUNTDOWN ...
:NUMBER is O
s
=3
Mr. COUNTDOWN
% ©
!rdonell

Ty

A

10 PRINT ... " "
15 IF ZEROQ .,g?. BLASTOFF
20

NN

| O .
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prints "2" (line 1¢), which is not zero (line 15), so calls
m.B, who similarly prints "1" and calls l.m. (c¢), l.m. C prints "@",
h is zero so (line 15) he prints "BLASTOFF" and STOPs, i.e. tells

|.m. B that he is done. 1.m. B has already executed his last instruction
e 20), so he too is done, and so similarly is l.m. A.

1 Little Man Method

We have just used an application of our very powerful Little Man
thod, which looks like this:

Little Man Method

A. 1Is (are) there any special or simple case(s) that
I can take care of myself?

B. Otherwise, can I break the task into two (or more)
parts, such that

(i) I can cope with one of the parts myself,
and (ii) I can give the other part(s) to someone else?

In the case of COUNTDOWN, the special case (A) is when the number is
 zero, the part the little man can do himself (B(i)) is to print the given
number, and the part (B(ii)) that he gives to someone else is to COUNTIDOWN

~ one less than the given number.

4 It follows that the structure of a procedure written by this method

is somewhat as follows:

1. Test for the special case; if so, take care of
it, and stop.

2. Deal with the part to be handled directly.

3. Ask someone else to deal with the rest.

(Sometimes, as in COUNTDOWN, step 2 may precede step 1).

Another example: LAUGHNTIMES

: Try the Little Man Method on another example, Remember the procedure
LAUGH? How about a procedure LAUGH7TIMES, that will laugh exactly 7 times?

We could have




TO LAUGH7TIMES

1¢ LAUGH

2¢) LAUGH

3¢ LAUGH

49 LAUGH

5¢ LAUGH

6¢ LAUGH '
7¢ LAUGH

END : |

but this doesn't look toc good, and is obviously hopeless for LAUGHing

2719 times. It's actually easier to write the more general procedure

that can laugh any number of times, and then tell it how many times we
want.
So let's try writing

TO LAUGHNTIMES <HOWMANY
We could follow the same argument as for COUNTDOWN, so that we first have
a procedure that laughs indefinitely (cf. KEEPLAUGHING) and then we worry
about how to stop it. Instead, apply the Little Man Method and try to
get the procedure right directly.

S0, is there any special case the l.m. can take care of himself?

Yes of course, if he is asked to laugh zero times then he simply stops:
1¢ IF ZEROQ :HOWMANY THEN STOP '
Otherwise, can the 1.m. break the task into two parts such that .., ?
Yes, for example if he is asked to laugh 19 times, he can laugh once himself
and ask someone else to laugh the other 18 times:
TO LAUGHNTIMES /HOWMANY
1¢ IF ZEROQ :HOWMANY THEN STOP
——%.. 20 LAUGH
——%= 3¢) LAUGHNTIMES DIFF :HOWMANY 1
END
Simple! |
Exercises 5.3 Draw the little men diagram for LAUGHNTIMES 3.

5.4 Write a procedure to sing a simplified version of a well-
known song:
e.g. 1: SIMPLEMOW 23
23 MEN WENT TO MOW
22 MEN WENT TO MOW
21 MEN WENT TO MOW

.

2 sl cellimm
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ion along a list b el g_ﬂ'_r
~ In both COUNTDOWN and LAUGHNTIMES, we have determined wher :
-_eounty_tg. There is another important class of proseqqrggm
itrol the recursion by doing something to each item on a 1i!5$h~4=!yﬂ

kinds of procedures correspond directly: f?

For a counting recursion, where we do something N times,

(a) we ask if N is zero, if so we stop; \
(b) we do it once;

(c) someone else does it (N-1) times.

For a list recursion, where we do something with each item on a list,
(a) we ask if the list is empty, if so we stop;

(b) we do it with the FIRST item of the list;

(c) someone else does it with the rest (i.e. BUTFIRST) of the list.
An example: PRINTLIST

Most of our examples could be done with APPLIST or WHILE, but this will

not always be possible. In order that we can explore recursion along a
list in some simple cases we will suppress the APPLIST and WHILE solutions.
Let us again try to write the procedure PRINTLIST, which prints each element
of a list on a separate line. Assume we have

TO PRINTLIST /ANYLIST

and apply the Little Man Method.

Is there any special case the l.m. can take care of himself? Yes,

if the list is empty, then he has nothing to do:
1¢ IF EMPTYQ :ANYLIST THEN STOP
Otherwise, can he break the task into two parts ----? Yes, he him-

self can print the first item
2¢ PRINT FIRST :ANYLIST
and ask another l.m. to look after the rest of the list:
3¢ PRINTLIST BUTFIRST :ANYLIST
So we have:
TO PRINTLIST /ANYLIST
1¢ IF EMPTYQ :ANYLIST THEN STOP
2@ PRINT FIRST :ANYLIST
3¢ PRINTLIST BUTFIRST :ANYLIST
END




tANYLIST is [PEN]

20 PRINT ..,
30 PRINTLIST [PEN] =

"PENCIL"

:ANYLIST is [ ]
10 IF EMPTYQ ...

20 PRINT ... e
30 PRINTLIST

[ l»
l'lm"

10 IF EMPTYQ ...
20
30

Exegesis of the Little Man Method

Try summarizing our experience with the kind of procedures discussed
above, as a commentary to help in the use of the Method:

For counting recursion, we often have:

Special case (A) consists of equality between two numbers
(with zero as a particular instance).

Step B(i) consists of doing what was asked just once.
Step B(ii) consists of doing what was asked "N-1" times.
For list recursion, we often have:
Special case (A) consists of the empty. list.
Step B(i) consists of doing something to FIRST of the list.
Step B(ii) consists of recursing on the BUTFIRST of the list.
AMONGQ
We are now in a position to write the procedure AMONGQ:
TO AMONGQ /ITEM /LIST
Clearly, this involves some kind of a recursion down the list, though we
may not have to go to the very end. What we have to "do" with each
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nt of the list is to check whether it h the same as the ngen item.
ly the Little Man Method:

— o —

_Is there any special case ....?7 The commentary recommends checking
the empty list., If we have the empty list, then Wﬂm
tem is not contained in it, so the result of the procedure mtz“ﬁg FALSE:
1¢ IF EMPTYQ :LIST THEN RESULT FALSE

Break into two tasks .....? The commentary recmdsﬁ’!eaﬁhg
the first element of the list. If it is the same as the gim ig“n. then
the result of the procedure must be TRUE: \ ™

20 IF EQUALQ $ITEM FIRST :LIST THEN RESULT TRUE
Otherewise we need to go searching down the rest of the list:

3¢ RESULT AMONGQ. s ITEM BUTFIRST :LIST
So we have:

TO AMONGQ /ITEM #LIST
1¢ IF EMPTYQ :LIST THEN RESULT FALSE
2¢ IF EQUALQ :ITEM PIRST :LIST THEN RESULT TRUE

3¢ RESULT AMONGQ. : ITEM BUTFIRST :LIST
END

~ Exercise 5.5 Draw 1.m. diagrams for AMONGQ "HOUSE [DOG CAT COW] and
. AMONGQ 'CAT [DOG CAT COW].

| Understanding recursion: TRIANGLE
Consider the procedure TRIANGLE
1: TRIANGLE [V W X Y Z]
[Vwxyzl
[WXY 2]
Ex ¥ 2]
[y z]
[zl
[1
1:
Writing this should now be a simple exercise:
TO TRIANGLE ‘LIST

1¢ PRINT :LIST ——part B(i)

2¢ IF EMPTYQ $LIST THEN STOP ————gpecial case (a)
3¢ TRIANGLE BUTFIRST :LIST ——the rest, B(ii)
END

what happens if we add a new line:
4@ PRINT :LIST %
r it and see!
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¢t surprising? Try understanding it in terms of the little

-----

10 PRINT ...”
20 IF EMPTYQ ‘/’
30 TRIANGLE ...

40 PRINT ...

"[A BI" y [B1" "$LIST is [ 3]
10 PRINT -. '
20 IF EMPTYQ ...

30 TRIANGLE ...
40 PRINT .. A
U o \
"done"/#
i [B] (1]

B« Jeeztppm

"done"

When 1l.m. C stops (line 2¢), 1.m. B resumes with his next instruction
(line 4@) and prints "[B]", then he is finished so l.m. A resumes and
prints "[A BI"™.
Exercises 5.6 What happens if we swap lines 10 and 15 of COUNTDOWN?
Or lines 10 and 20 of TRIANGLE? . :

5.7 Define the procedure COUNTUP which counts up from one
number to another: . 9018 WEHY TEid

1: COUNTUP 8 11

8

9

10

11

e bl S o s, | 6 S ik, et 4
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5.8 Define the procedure NTH, which returns the Nth element of

gL g &8
1: PRINT NTH 2 [COW DOG HORSE] baan o¥ lLis
DOG os lousty &8 doi
1: PRINT NTH 3 [ON CIRCLE SQUARE] e T
SQUARE % OF
1: PRINT NTH 2 [PINKI [ 8
LIST TOO SHORT i Phgs iag,
5.9 The procedure RANDOM returns a random number between @ and
the number it is given as argument, s
e.g. RANDOM 3 returns one of the numbers O, 1, 2, or 3 with equal
likelihood. 1 HUoD

Use RANDOM and NTH to write a procedure RANDOMSELECT which returns a
randomly chosen element of the list it is given:

1: PRINT RANDOMSELECT [BLUE GREEN RED YELLOW]

RED

1: PRINT RANDOMSELECT [BLUE GREEN RED YELLOW]

BLUE

Constructing Recursive Objects

Just as we have used the Little Man Method to deal with tasks that

have a recursive structure, so also we can use it to construct objects

with a recursive structure. Adapt the wording of the l.m.m. appropriately.
e.g. we ask if there is a special case where we can comstruct the
entire object immediately, otherwise we ask other Little Men to build parts
of the object and then we put them together, etc.
In LOGO the "objects' we are constructing are usually numbers or lists.
e.g. in COUNTDOWN we analysed the task of doing something ten times
as: doing it once, then doing it the remaining nine times:
10 = 1 +# 9 (recursive)
Similar, to construct an object of ten parts, we get someone else to build
the object with nine parts and then we add the tenth part, an act of
synthesis:

1 + 9 (recursive)-»10
SUMOFLIST Want a procedure whose input is a list of numbers, and
ihich outputs the sum of all the numbers.
1: PRINT SUMOFLIST [5 7 9 11 13]
45
As usual, we break the list into its FIRST and BUTFIRST components:
: (579111315 4& [7 9 11 13]

%



is a corresponding synthesis of the total sum we are seeking:
5 + SUMOFLIST ([7 9 11 131 —» 45
All we need now to apply the l.m.m. is the specially easy case,
which as usual comes from the empty list.
Notice that SUMOFLIST [ ] is @¢. So we get
TO SUMOFLIST /NUMBERLIST
1¢ IF EMPTYQ :NUMBERLIST THEN RESULT ¢
2¢) RESULT SUM FIRST :NUMBERLIST
SUMOFLIST BUTFIRST :NUMBERLIST
END
Exercise 5.10 Draw the 1.m. diagram for SUMOFLIST [10 17 23].
COUNT This is of course a built-in procedure, but how could we
write it if it weren't already provided?
e.g. COUNT [A B C D E] ?
Apply the usual 1.m. analysis of the list, and there is a correspcnding
synthesis of the number we want:
1 + COUNT [B C D E] —9 COUNT [A B C D El
And of course, COUNT [ 1 is @.
TO COUNT “LIST
1§ IF EMPTYQ :LIST THEN RESULT ¢
2() RESULT SUM 1 COUNT BUTFIRST :LIST
END
Exercise 5.11 NUMBEROF
e.g. NUMBEROF 'COW [HORSE COW DOG COW SHEEP] is 2.
What are the analysis/synthesis rules?
(a) NUMBEROF 'COW [HORSE COW DOG COW SHEEP] €——
¢ + NUMBEROF 'COW [COW DOG COW SHEEP]
(b) NUMBEROF 'COW [COW DOG COW SHEEP] €——
1 + NUMBEROF 'COW [DOG COW SHEEP]
(c) NUMBEROF 'COW [ ] =& ¢ :

Can you write the procedure?

Constructing litts

To get the parts of a list, we have used the analysis
LisT —E2Bf o § .L1ST & BF sLIST

To build up a list, we can use FIRSTPUT
:ITEM & :LIST ——""p- FPUT :ITEM :LIST

e.g. FBUT '& [B'C DY 'is [A B'C DJ.

il

.
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I E D' 3
otice these relationships that hold for all lists: wt
FIRST FIRSTRUT :X :Y ,...... wiprasni SRR

et ﬁ‘d
ADD1LIST ¥

Given a list of numbers, write a procedure to return the Iicﬁ_;m“
2 added to each of the numbers:

e.g. ADDILIST [100 200 3001 is ... [101 201 301].
ADDILIST could be easily written using MAPLIST, but this is not
true of the next two examples; so we ignore the MAPLIST solution and

BUTFIRST FIRSTPUT :X :¥ ,...c.00e0.. i :Y

concentrate on the recursive one.
We analyse the argument list as follows:

(100 200 3001 —3- 100 & [200 300]
The corresponding synthesis of the result list is

ADDILIST [100 200 300] ~¢—— (100 + 1) & ADDILIST
[200 3001

Unless this is the null list, in which case the synthesis is
ADDILIST [ ]l = [ 1

So we have,

TO ADDILIST “LIST

1@ IF EMPTYQ :LIST THEN RESULT [ 1]

20 RESULT FPUT SUM 1 FIRST :LIST
ADDILIST BF :LIST

END

Exercise 5.12 Write a procedure NEGSUBLIST which returns a list of
those numbers on its argument list that are negative,

g.g. NEGBUBLIST (1 =2 3 =4 51 i3 ... [=2 =4l,

Example WITHOUT

In the M&C program we will need the procedure WITHOUT for changing
one state description into another '
i.e. MAKE “LEFTBANK WITHOUT :MOVELIST +LEFTBANK
here WITHOUT is a procedure which removes a sublist from a list
e.g. 1: PRINT WITHOUT [M C BOAT] [M M C C BOATI]
M c]

We now tackle the problem of writing this procedure. Remember

that the heart of programming is breaking tasks up into easier sub-tasks,
80 i.e. first tackle the easier problem of removing just a single item

a list,

e.g. WITHOUT1 'M [C M C BOAT] is ... [C C BOAT]

are the synthesis rules? It must depend on whether or not the

rst of the list is the item we are trying tc remove, e.g.
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EF,

WITHOUTL 'M [C M C BOAT] «—— 'C & WITHOUT1 'M [M C BOAT]
WITHOUTL 'M [M C BOAT] €—— [C BOAT) SR
. The empty list this time is a bit weird: if we can reach it
it means that we haven't been able to find the item we're
looking for. This may indicate an error.
So we have
TO WITHOUT1 “ITEM “LIST
(case (c)): 10 IF EMPTYQ :LIST THEN BREAK ERROR
(case (b)): 20 IF EQ :ITEM FIRST :LIST THEN RESULT BF :LIST

(case (a)): 30 RESULT FPUT FIRST :LIST
WITHOUT1 :ITEM BF :LIST

END
Exercise 5.13 Write WITHOUT, making use of the sub-procedure WITHOUTI.
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Programming Test - 1

Please answer the questions below and hand in YOUI answers next
irsday, 30th October. This test will NOT BE USED FOR ASSESSMENT. It
purely to give us feedback on how you are finding the LOGO programming.
'i refore - and unlike other programming exercises - it would be better if
you do this test individually, without collaboration.

{, What is the result of the following LOGO commands:
(a) COUNT [DESK [TABLE CHAIR] CARPET]

(b) FIRST [CIRCLE SQUARE TRIANGLE]

(¢) FIRST [[COLOUR RED] ([SIZE BIG1]

(d) BUTFIRST [CIRCLE SQUARE TRIANGLE]

(e) BUTFIRST [[COLOUR RED] [SIZE BIG]]

(f) BUTFIRST [MAN WOMAN]

(g) SUM COUNT BUTFIRST [A B ¢l 7

Define a procedure CENSOR which checks on the public acceptability
of lists. More precisely, the procedure CENSOR takes a list as
argument, and if the word "SEX" occurs in the list it prints out
the word "CENSORED", and if not it prints out the word "PASSED",
e.g. 1: CENSOR [A PORNOGRAPHIC FILM]

PASSED

1: CENSOR [REPRESENTATIVE OF THE FAIR SEX]

CENSORED

et ik

Hint Use the predicate AMONGQ - see previous handouts.

Suppose that we keep student records in the form of lists, con-

taining the name, age, and department of each student,

8 [BLOGGS 23 ASTROLOGY]
[MCFINLAY 95 GERIATRICS]
Write a procedure NICEPRINT that will type out onme of these lists
in a readable format:
e.g. 1: NICEPRINT [BLOGGS 23 ASTROLOGY]
NAME BLOGGS
AGE 23
DEPT ASTROLOGY
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i}:’f\zf if

- Define a predicate VOWELQ which decides whether a given word
one of A, E, I, 0, or U.
e.g. 1: PRINT VOWELQ 'E

TRUE

1: PRINT VOWELQ 'F

FALSE

dx

B Define a predicate CONSONANTQ which tests for consonants.



Behind the Scenes

ber of students have asked questions about what goes on behind
5 in LOGO i.e. how do computers work etc. This handout is

e Physical Set-up

Some of you were surprised not to find a computer in the Appleton
wer, but just a lot of teletypes. The computer is actually located
r%ﬁ the James Clerk Maxwell Building at King's Buildings, where it is run
!Sy the Edinburgh Regional Computer Centre (E.R.C.C.). The teletypes are
connected to the computer by a high speed telephone line provided by the
G.P.O. In order to save on telephone lines all the teletype signals are
collected together at the Appleton Tower end by a mini-computer (called a
PDP1l) and sent down one line to K.B. At K.B. a similar mini-computer
(the front end processor) decodes the separate signals and feeds them to
the big computer where they are stored in a "buffer" until they can be
processed, A similar process happens in the reverse direction when the
computer talks to the teletypes.

In fact there are two computers at K.B., the I.C.L. 4-75 A and B
machines. Your relationship with them is cunningly controlled by the
front end processor, so that you should never notice that there are two
machines.

The main computers are actually dealing with several users at any

one time. They are running a main program called the operating system

which divides the effort of the computer between the users on a "round
robin" basis. The cperating system also kéeps each users program iso-
lated from everyone elses in the computer's working memory. This is
deone in such a way that it should always appear to you that you have the
computer all to yourself.

The set up is summed up in the following diagram.



= IcL 4/75

000

PDP11l
:::: o0 &S00 Lisia A Machine
concentrator O O O
or
T.C.P.

B Machine

For more information see: Frank Stacey in Comp. Sci. and various E.R.C.C.

Newsletters.

How Computers Work

Computers can be conveniently divided into four components: the
control unit; the arithmetic unit; the store and the input/output.

Control

input/
output Unit

|
i
}

A4

Arithmetic
b Unit

Store

Reproduced from O0.U. Television Notes on Mathematical Foundation Course.
The Arithmetic Unit is where the basic arithmetic operations, like
adding two numbers, are performed. The store is where your programs
and data are stored. Input/output covers a wide range of peripheral
devices like: teletypes; line printers; card readers; disc files
and even other computers. The control unit is the thing which decides
what to do next, e.g. whether to: add two numbers; get something from
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e or output to the line printer. It knows what to do because it
eds itself your program in a suitably coded form. EhE L o
Machine Code 5 i

The suitably coded form is called machine code. This is thﬁmqéh!
programming language which the control unit understands. ALl other
guages: LOGO; IMP; FORTRAN; ALGOL etc. have first to be translated
into machine code. The computer does this for itself by using either a
compiler or an intexrpreter. These are programs which operate on your
program as if it were a piece of data and produce a machine code trans—
lation. A compiler does this once, giving you the machine code in a
form in which you can ask for it to be run. An interpreter translates
your program as it is run.

1OGO procedures are currently interpreted into IMP by the LOGO system
and thence into machine cede, ERCC do not allow direct translation into
machine code. Interpretation is much slower and more expensive than
running an already compiled, machine code program. However, interpre-
tation is much more convenient when a Program is being developed, inter-
actively because you do not have to recompile after every change. Com-
Piling is best when a program has been completely developed and is now

to be used for several "production runs".

Machine code is actually a sequence of binary numbers like:

i IS S b s o S R e I
0glliloaooll
0looolllo00

- e o w ome e e w

control unit will break this into parts according to its own conventions.
part will tell it the instruction to be performed. One part will tell
£ where, in store, to find the thing to perform the instruction on
€.g. The first number might be broken into
C1l10and 0011111
© number O 1 1 O tells us this is a "fetch from store” instruction,
i number 0 0 1 1 1 1 1 is the address of some location in store.
is currently in that location is copied into a special place

lauxn:mulabar) in the arithmetic unit. The next number is broken
into

0O0lland 1000011
0011 tells us this is an "addition" instruction. The number
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1000011 is the address of some place in store. The contents of
that place are added to the number in the accumulator and the result is
stored in the accumulator, The next instruction would be to store the
result in some place in store.

For more information see the Open University introduction to com-
puting or read:

Hollingdale, S.H. and Toothill, G. C. "Electronic Computers",

Penguin Books, 1965,

The Computer's Memory

So far we have discussed only one part of the computer's memory,
the store (sometimes called core store). This is where the computer
keeps the things it is currently working on. Information in core store

can be accessed fast, but core store is expensive. Therefore the com-
puter has a hierarchy of cheaper but slower memories, These are, in
order of decreasing cost and speed: the paging drum; the disc files;

M@ Paging
Drum ]

LOADing

the archives,

Core Store

SAVing ¢

CcmEuter Hemogx

disc
files ‘

Automatic RESTORing

Archives

All these extension memories are based on magnetic recording, like
your home tape recorder. The archive store is in fact Just that: a
tape recorder. The disc files are a stack of magnetic discs: like a
juke box for 1l.p.'s. The paging drum is a revolving magnetic drum.

The paging drum is an (optional) extension to the computer's core
store. Users who are logged on but who are waiting to be worked on,
will probably have their programs stored there, Even parts of a program,
which is being worked on, may be there. You should not notice your
brogram being put out or brought in from the drum, except that the number |
of "page turns", i.e. the number of times bits (or pages) of your program




