
Efficient Reordering of C-PROLOG

Jian Wang, Jungsoon Yoo, and Tom Cheatham
Department of Computer Science

Middle Tennessee State University
cswanjin, csyoojp, cheatham@mtsu.edu

Abstract

PROLOG uses a depih-first search of an
AND/OR graph to satisfy queries against its
database. It searches sequentially through the
clauses of a predicate whose head matches the
query, trying to satisfy the goals in the clause
body in a sequential left-to-right order. The
ordering of clauses and goals is a major factor
in the eficiency of a PROLOG program. We
have developed a profiler for C-PROLOG that
collects statistics including the failure rate of
clauses and goals in a C-PROLOG program.
These statistics are used by any of several re-
ordering predicates capable of local or global re-
ordering. The intent is to construct a reordered
PROLOG program that outputs an equivalent
set of answers, and is more efficient. Test re-
sults are promising.

1 Introduction

The graceful non-procedural style of PROLOG has at-
tracted many crusaders since its introduction by Robert
Cohmerauer to develop a French-to-English translation
system [2]. Its strongest support has come from the AI
community, especially in Europe, and from the Japanese
Fifth Generation Computer Thrust. PROLOG pro-
grammers are well acquainted with the inherent ineffi-
ciency in PROLOG’s depth-first search of an AND/OR
graph to satisfy a pending query. To see how the search
works, we provide a simple example which will serve a
dual purpose,

healthy(X) :- eats-right(X),
sleeps-enough(X),
exercises(X).

healthy(X) :- young(X).

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

01993 ACM 0-89791-558-5/93/0200/0151 $1.50

eats-right(X) :- eats-fruit(X),
eats-grain(X),
eats,meat(X),
eats-dairy(X).

eats,fruit(tom).
eats,fruit(jungsoon).
eats,fruit(jia.n).

eats-dairy(tom).
eats,dairy(jungsoon).

eats,grain(tom) .
eats,grain(jungsoon).

sleeps-enough(jian).
sleeps-enough(jungsoon).

eats-mept(tom).
eats-meat(jungsoon).
eats-meat (j ian) .

exercises (jungsoon).
yonng(jian> .

To settle a query such as

?- healthy(tom).

PROLOG matches the query against the head of a
rule or fact in the database, in this case instantiating X
to “tom” in the first clause. Next, PROLOG tries the
first goal from the right side, namely, “eatsJight(tom).”
To refute this goal, PROLOG matches with the head
of the third clause in the database instantiating X
to ‘%om” and, then tries the first goal from the
right side, namely “eatsfruit(tom)” which succeeds
and leads to the next goal from “eats-right(tom),”
namely, “eats-grain(tom),” and so on. Eventually,
the query “healthy(tom)” will fail since, for instance,
“sleeps-enough(tom)” can not be satisfied. Thus, the
conjunction of the goals within a clause forms an AND
node, and the disjunction of the clauses in a predicate
forms an OR node in the AND/OR graph for the query
“healthy(tom).”

151

Experienced PROLOG programmers can write more
efficient PROLOG programs, but it is often at the ex-
pense of clarity and time. It is generally agreed that “ef-
ficiency” is not a first-order software engineering prin-
ciple. Rather, efficiency should be considered after a
working system has been developed based on principles
that provide for understandability and maintainability.
The tools and techniques described in this article make
this approach feasible in C-PROLOG programming. A
new “profile” predicate is added to the C-PROLOG in-
terpreter that allows the programmer to calculate se-
lectively the success and failure rates for the clauses of
a predicate and the goals of a clause. Once statistics
have been collected for a reasonable time, the program-
mer can, after viewing the statistics, select one of the
new reordering predicates to reorder part or all of the
program.

The example above can be used to see how clause and
goal order affect efficiency. Assume that more people
“eat right” than “sleep enough” and that more people
“sleep enough” than “exercise.” Further, assume that
most people are not “young” any more. Using these
assumptions, the first clause in the “healthy” predi-
cate, “eats-right,” will succeed often before the clause
“healthy” eventually fails, due to one of the other two
goals. The effort it took to succeed the “eats-right” goal
is then wasted. It would be better to order the goals by
decreasing probability of failure, namely,

healthy(x) :-
exercises(X), sleeps-enough(X), eats-right(X).

When we reorder goals in a clause body, we move the
goals that are more likely to fail to the front of the list,
preventing time spent on intermediate successes which
eventually lead to failure.

One is inclined to reverse the order of the two
“healthy” clauses since it appears that the second has
a lower “cost” to evaluate. However, since we assumed
that “most of us are not young any more,” the second
clause would fail often and probably should remain in
the original order. When we reorder clauses in a pred-
icate, we will move the clauses that are most likely to
succeed to the top of the clause list for the predicate,
thereby avoiding extra work.

2 Related Work and Assumptions

There have been numerous attempts to improve the ef-
ficiency of PROLOG. The “cut” was added to prevent
undesirable backtracking. PROLOG compilers were de-
veloped to reduce translation time. A parallel unifica-
tion machine has been suggested by Sibai, Watson, and
Lu [5] to reduce the time spent in unification. Clause
indexing has been suggested by Warren [7] to improve
the efficiency of clause selection.

Recently, Gooley and Wah [3], using a Markov-chain
to model the execution of a PROLOG query, have sug-
gested a heuristic method for reordering clauses and
goals within a PROLOG program to improve efficiency.
Their method puts the clauses that are “more likely to

succeed” and “inexpensive to evaluate” near the begin-
ning of a predicate and the goals that are “more likely to
fail” and “inexpensive to evaluate” near the beginning
of the clause body. Probabilities for success and failure
as well as costs must be entered by the programmer, at
least for base clauses. Further, the calculations required
for their methods will be expensive if implemented in a
real system.

We have implemented a reordering mechanism in C-
PROLOG. Our method suffers from a number of weak-
nesses which will be addressed in a future version. Any
practical method is likely to have weaknesses. Cur-
rently, we assume the “cost” of evaluating a goal is a
constant; that is, every goal costs the same to evalu-
ate. Our C-PROLOG profiler collects the number of
goals, in the AND/OR graph for a predicate p, that
are called and that fail while profiling the predicate p.
The average of these measures over the number of calls
to predicate p could be viewed as a limited measure of
the “cost” of evaluating the predicate p. In the current
version, cost is not used as a factor in reordering. We
base our decision to reorder solely on the probability
of success and failure, collected during profiling, of the
requisite clauses and goals. The programmer is not re-
quired to assign costs or probabilities, not even for base
clauses. He/she must decide when to reorder based on
the statistics collected by the profiler and whether fur-
ther reordering is required.

Some predicates can not be reordered. For instance,
in the clause (al) of the predicate a no other order for
the goals is acceptable:

la;{
a :- write(‘You are’), b, write(‘welcome.‘).

a a :- write(‘not welcome.‘).

Built-in predicates that perform I/O, like “write,” or
alter the PROLOG database, like “asserta,” can not
be reordered when used as goals. If such a predicate
appears as a goal in the body of a clause, as with “write”
in the clause (al) above, then clause (al) is fixed in its
predicate.

The “cut,” denoted “!,” restricts reordering. When
the cut appears as a goal in a clause body, goals can
not be reordered from one side of the cut to the other.
However, we do allow reordering on either side of the
cut. We allow clauses containing the cut to be reordered
within their predicate. We do not address “implica-
tion” or “disjunction.” We do not consider the effect of
“modes” on reordering as discussed in Gooley and Wah
[31*

3 New C-PROLOG Predicates

C-PROLOG which can be licensed from the Univer-
sity of Edinburgh includes the source code written in
the C-language. It consists of nearly 10,000 lines of
mostly uncommented code. Understanding the struc-
ture is a challenge. Ten predicates have been added
to the C-PROLOG interpreter: profile/l, profile/2, re-
orderc/l, reorderg/l, reorderallc/O, reorderallg/O, set-
fixity/O, listto/l, listprog/O, and performance/O.

152

Table 1: Profile of Health Program

Clause C 11 Success Failure Failure %
healthy(VAR) :- 3ao* 10 20 66.67 .

eat&ight(VAR),
sleeps-enough(VAR),
exercises(VAR).

healthy(VAR) :-
young(VAR) .

eats-right(VAR):-
eats-fruit(VAR),
eats-grain(VAR),
eatsmeat(VAR).
eats-dairy&AR).

20 5 15 75.00

30 25 5 16.67

The last three predicates allow the programmer to
inspect the results of the profiling and the reordering.
“Listto(filename)” will redirect C-PROLOG’s output to
the specified file providing a “dribble” or “audit log” of
the session. “Listprog” displays each clause in the PRO-
LOG database and its corresponding profiling statistics,
such as the number of times it was instantiated and the
number of times it failed. In the output from “list-
prog,” all variable names are replaced by “VAR.” If one
wants a conventional listing of the database, the stan-
dard built-in predicate “listing” can be used. Invok-
ing Uperformancen reports a table, as shown in a later
section, summarizing the performance results gathered
during testing. For comparison, “performance” should
be printed before reordering and after.

Before reordering can be done, statistics must be
collected, using the “profile” predicate, to drive the
reordering heuristic. A typical request to profile the
“healthy/l” predicate in the example above would be:

profile(healthy(-), on).

Statistics will be collected for the “healthy” predicate
and all goals and clauses in its AND/OR graph until
profiling is turned off by:

profile(healthy(,), off).

The statistics are cumulative, over the session, that
is, over the various calls to “profile.” For each clause in
the AND/OR graph of a predicate p being profiled, the
system accumulates the number of calls to the clause
and the number of times it fails. The probability of
failure of a goal in a clause is calculated as the product
of the probability of failure of the clauses in the corre-
sponding predicate. Assume there is a predicate

happy(X) :- healthy(X), has-friends(X).

that contains the “healthy” predicate described above
as a goal. The probability of the failure of the
“healthy(X)” g oa is estimated by the product of the 1
failure probabilities of the two clauses in the “healthy”

predicate, as collected by the profiler. It is obvious that
the failure rates of the two clauses in the “healthy” pred-
icate are not independent. Due to PROLOG’s search or-
der, the second clause will only be tried if the first fails.
The failure rate calculated by our profiler, the number
of failures divided by the number of instantiations, is
not an independent probability. For convenience, we
use it as an estimate of the independent probabilities.
A sample of the output from the profiler for the “health”
program is given in Table 1. The data are the result of
30 queries to the “healthy/l” predicate and serves only
to demonstrate the form of the profiler’s output.

The programmer can inspect the statistics collected
to date by the profiler and determine “if” and “when”
to reorder. Considerable latitude is provided in the
reordering process. Both clauses and goals (within
clauses) can be reordered, separately or in conjunction,
either locally or globally. We recommend separate lo-
cal reordering of goals and clauses, goals first with 5e
orderg/l” and then clauses with “reorderc/l.” Then,
when problems arise as a result of the reordering, as
they will, it will be easier to identify the error(s). It is,
however, possible to reorder globally across all clauses
in the program with “reorderallc/O” and across all goals
within the program with “reorderallg/O.” Before re-
ordering, the programmer should run “setfixity/O” to
turn on the ‘fixed flag” for all built-in predicates that
should not be reordered.

4 Performance Evaluation

Does reordering goals and/or clauses in a C-PROLOG
program improve its efficiency? Not always, with our
current version. Consider, for example, a predicate
“mux/l” short for “mutual exclusion” :

I”:]
mux(X) :- X > 2.

m mux(X) :- X 5 2.

which is tested with random values of X in the range
0 - 9 inclusive. Theoretically, (ml) will succeed 70% of
the time it is called and (m2) will succeed exactly the
other 30% of the time. The two clauses of “mux” are
already in the best order! However, testing “mux” with

153

Table 2: Performance of Clause Reordering

Predicate
Family Program
brother/2
father/%
husband/2
mother/2
sister/2
wife/2

After
Call Fail

1976
7386

10439
8418
996

9722

1568
6968
9667
7958
636

8952

Reduced Reduced
Before Call Fail

Cdl Fail % %

2388
7763

11366
8730
1852

10119

2036
7345

10594
8270
1492
9349

17.25
4.86
8.16
3.57

46.22
3.92

22.98
5.13
8.47
3.77

57.37
4.25

Parts Inventory
partsof/2
partsoflist/2

Fibonacci Number
fib/3

1937 1118 2284 1465 15.19 23.69
3840 2120 4276 2556 10.20 17.06

940 24 1220 352 22.95 93.18

Table 3: Performance of Goal Reordering

Reduced Reducea
After Before Call Fail

Predicate Call Fail Call Fail % %
brother/2 2388 2036 2388 2036 0.00 0.00
father/2 1265 1084 7763 7345 83.70 85.73
husband/2 1540 1344 11366 10594 86.45 89.30
mother/2 1074 902 8730 8270 87.70 89.09
sister/2 1852 1492 1852 1492 0.00 0.00
wife/2 999 799 10119 9349 90.13 91.45

Table 4: Performance of Clause and Goal Reordering

After Before
Predicate Call Fail Call Fail
brother/2 1976 1568 2388 2036
father/2 678 518 7763 7345
husband/2 613 417 11366 10594
mother/2 618 458 8730 8270
sister/2 996 636 1852 1492
wife/2 602 402 10119 9349

Reduced
Call

%
17.25
91.27
94.61
92.92
46.22
94.05

Reduced
Fail

%
22.99
92.95
96.06
94.46
57.37
95.70

154

100 random queries, with profiling turned on, (ml) will
succeed 70 times out of the 100 tries, and (m2) will suc-
ceed 30 times out of the 30 times it is called, on the
average. Since the success ratio of (m2) is greater, the
reordering predicate, reorderc, will reverse their order:

pj
mux(X) :- X < 2.

m mux(X) :- X > 2.

which is clearly inferior. Repeated use of profiling and
reordering, using the same test queries, will correct this
error. In general, a second cycle of “profile and reorder”
will correct a misordering of clauses if there is a sig-
nificant difference in the “actual, independent” failure
probabilities of the clauses. If the difference is not sig-
nificant, a reordering error is not critical.

Reordering can change a working program into one
that, for instance, does not terminate, especially where
recursive predicates are involved. Inspecting the statis-
tics gathered by profiling the reordered system will
quickly pinpoint an infinite loop.

While reordering does not always work as one would
hope, it will often yield a more efficient C-PROLOG
program. Several factors affect the expected improve-
ment from reordering. These factors include mobility,
nondeterminism, dispersion of failure probabilities, and
the size of the fact base [3], [S]. Predicates containing
fewer fixed goals will benefit the most from reordering.
The efficiency of a deterministic predicate will not be
improved by our methods. If the failure rates of the
various clauses in a predicate are nearly equal, little
gain can be expected from reordering. Predicates with
large fact bases generally show a greater gain from our
“caching” clause reordering.

We present performance statistics based on three sim-
ple systems: a two-predicate recursive Fibonacci num-
ber calculator; a parts inventory program from Clocksin
and Mellish [l]; and, a “pure PROLOG” “family” pro
gram containing twenty clauses divided among 11 pred-
icates. The family database contains approximately 60
facts. The evaluation is divided into three parts, and
a before-and-after performance is shown for clause re-
ordering alone, for goal reordering alone, and for clause
and goal reordering working in tandem. The results
in Tables 2, 3, and 4 are based on 40 queries to
each predicate in the family program; 40 queries to the
two predicates from the parts inventory program; and
8 queries to the Fibonacci predicate. The same queries
are used in the before-and-after tests. Only the family
predicates appear in Tables 3 and 4 because goals of
the other three predicates can not be reordered.

In Table 2, we can see that the gain from clause re-
ordering is impressive for some predicates, such as f/3
which shows a 93% reduced failure rate, and sister/2
which shows a 50% decrease in both calls and failures,
but not for all. Goal reordering in the family program,
as indicated in Table 3, shows attractive improvements,
over 80% reduction in calls and failures in four of the
six predicates profiled and no improvement in the other
two. When the reordering techniques are combined,

as shown in Table 4, the best overall improvement is
achieved - four of the six predicates show over 90% de-
crease in both calls and failures. It is possible, with the
current system, to actually degrade performance.

Improvements in various predicates can vary greatly.
In addition to the factors described above, programming
style also greatly influences the amount of improvement
expected from reordering. Overall, our approach has
shown promise.

5 Conclusions and Future Work

We have implemented a feasible reordering system in
the C-PROLOG interpreter, capable of reordering the
clauses of a predicate and the goals within a clause.
Clauses and goals can be reordered separately or to
gether, for one predicate or for the entire program. Re-
ordering is based on the probability of success or failure
as estimated by the profiler from typical execution see-
narios. Performance evaluation indicates a significant
decrease, as much as 90%, in the number of calls and
the number of failures for certain types of systems.

Our heuristic system for reordering clauses and goals,
while not perfect, does provide a first step toward im-
proving the efficiency in a C-PROLOG program. A
second version of the system is being developed that
provides a more theoretical foundation, including ind+
pendent probabilities for the clauses of a predicate, and
which bases the reordering not only on the probabilities,
but also on the “cost.” The new version will provide the
programmer the ability to set the “fixed flag” for user-
defined predicates, if necessary. Incorporating Gooley
and Wah’s (31 work on modes would be a next step.

References

[l] Clocksin, W. F. and Mellish. C. S., Programming in
Prolog, Springer-Verlag, New York, NY, 1984.

[2] Cohen Jacques, “A View of the Origins and Develop
ment of PROLOG,” Communicafions of ACM, Vol-
ume 31, Number 1, 1988, pp. 26-36.

[3] Gooley, M. M. and Wah, B. W., “Efficient Reorder-
ing of PROLOG Programs,” IEEE Zhasacfions on
Knowledge and Data Engineering, Volume 1, Number
4, 1989, pp. 470-482.

[4] Pereira, Fernando and Tweed, Christopher, C-
PROLOG User’s Manual Version 1.5 and 1.5+, SRI
International, Menlo Park, CA, 1988.

[5] Sibai, F. N., Watson, K. L., and Lu, Mi, “A Par-
allel Unification Machine,” IEEE Micro, Volume 10,
Number 4, 1990, pp. 21-33.

[6] Wang, Jian, Efficient Reordering in C-Prolog, MS
Thesis, Middle Tennessee State University, Murfrees-
boro, TN, 1992.

[7] Warren, D.H.D., “Applied Logic - Its Use and Im-
plementation as a Programming Tool,” Technical
Note 290, SRI International, Menlo Park, CA, 1983.

155

