
ACKERMANN’S FUNCTION: A STUDY IN THE

EFFICIENCY OF CALLING PROCEDURES

B. A. WICHMANN
National Physical Laboratory, Teddington,

Middlesex, TW11 0LW, UK

March 5, 1999

Abstract

A six line recursive procedure is used to assess the efficiency of the proce-
dure calling mechanism in ALGOL-like languages. The results from some 40
systems varying from ALGOL 68 and PL/I to System Implementation Lan-
guages for minicomputers are presented and compared. A hundred to one
variation in performance occurs with this test, the major reasons for which
are given.

Received April 17, 1975. Revised January 22, 1976.

1 Introduction

There are several areas where traditional high-level languages are notably less effi-
cient than hand-coding. Two of these areas are accessing array elements and calling
procedures. Although in the former case much research has been done to improve
the efficiency (resulting in the ALCOR and FORTRAN H2 compilers), little work
has been published on calling procedures. In many scientific computations pro-
cedures are not called very frequently but this is not true in non-numeric work.
Since modularisation by means of procedures is one of the most powerful program-
ming tools in structuring complex problems, an inefficient calling mechanism can
be very detrimental. In recent years there has been an increased use of high-level
languages as assembler replacements — the so-called ‘System Implementation Lan-
guages’. Such languages must achieve a high degree of object code efficiency if their
use is to become more widespread. The purpose of this paper is to compare the
procedure calling mechanism of traditional high-level languages with both system
implementation languages and machine-code.

2 Ackermann’s function

In view of tile paper by Sundblad [1], a reasonable test case for study seemed to be
the evaluation of Ackermann’s function. This function has the advantage of being
very short and not requiring large integer values for typical cases, yet being complex
enough to be a significant test. The figures given in Sundblad’s paper also provided
a basis for comparison before many values had been obtained.

Following Sundblad, we calculate Ackermann (3,n) for increasing n, in accor-
dance with the complete program listing below. Three figures are determined from
the test — the average execution time per call, the number of instructions executed
per call and the amount of stack space required for each call. Although the average

1

time per call can be determined from running tile program, the other two figures
cannot he found so easily and indeed, in many cases the figures are not available.

3 Program listing

begin
integer i, j, k, k1;
real t1, t2;
integer procedure Ackermann(m, n); value m, n; integer m, n;

Ackermann := if m = 0 then n + l
else if n = 0 then Ackermann(m - 1, 1)
else Ackermann(m - 1, Ackermann(m, n - 1));

k:= 16; k1 := 1;
for i := 1 step 1 until 6 do

begin
t1 := cputime;
j : = Ackermann(3, i);
t2 := cputime;
if j 6= k − 3 then

outtext(1, ‘WRONG VALUE’);
outreal(1, t2− t1);
comment Now output time per call;
outreal(1, 3× (t2− t1)/(512× k1− 15× k + 9× i + 37)));
k1 := 4× k1; k := 2× k

end
end

4 Properties of the algorithm

To determine the execution characteristics of the test one needs the following prop-
erties of the algorithm (which can be easily proved by induction). The number of
executions of each leg of the algorithm in calculating Ackermann (3, n) is:

first leg: (64× 4 ↑ n− 72× 2 ↑ n + 6× n + 26)/3
second leg: (24× 2 ↑ n− 3× n− 12)/3
third leg: (64× 4 ↑ n− 72× 2 ↑ n + 6× n + 23)/3
total
no. of calls = (128× 4 ↑ n− 120× 2 ↑ n + 9× n + 37)/3

Hence for large n, the average number of instructions per call is half the number
of instructions in the first and third legs. Both legs contain the procedure entry and
exit overheads and the third leg includes two unsuccessful tests for equality with
zero. So the number of instructions executed per call can be found by examining the
machine code produced by the compiler. Unfortunately this is not always easy and
sometimes almost impossible. To provide an approximate comparative value, an
estimate has been made from the time using a Gibson mix value [2] to extrapolate
from a similar machine. In a few cases, the instructions executed arc known but
the time has not been measured. In these cases, an estimate for the time is given
based upon published instruction times.

2

The amount of stack space required by the program is determined by the max-
imum depth of procedure calls. This is given by Sundblad as

Ackermann(3, n)− 1 = 2 ↑ (n + 3)− 4
and occurs when the third leg is being evaluated at all but the last of those levels.

Hence the amount of stack space required doubles when n is increased by one. For
a more detailed discussion on the storage requirements and the definition of the
‘maximum depth of recursion’ see [5]. To measure this space, Sundblad observed
the maximum value of 11 for which Ackermann (3, n) could be calculated using 26K
words of store (which he called the ‘capability’). Although this measurement is easy
to take, it only provides a rough estimate of the space needed per call. Examination
of the machine code of the third leg of the algorithm gives the precise value. In
fact, the number of words per call is the difference in the address of 4m in the inner
call to the address of the parameter in the routine. It is not easy to calculate this
value from the code, and so a post-mortem print may be the easiest way to find the
value. Rather than give the capability, the number of words per call is listed with
the results. If only the capability is known, bounds can be given for the number of
words per call by assuming that between 3K and 10K words are needed out of the
26K store for the program and run-time system.

5 Notes on the results

Estimates of missing values are included in the table in brackets and have been
calculated in the manner described above. The program listing in all cases has
followed the coding given very closely. The only exceptions are 1) the machine code
examples, 2) the PASCAL and SUE systems which have no conditional expressions,
and 3) PL516 which follows the hardware of the machine in not supporting recursion
(stacking is performed by subroutines).

3

6 Results

Language/ Time per call Instructions Words Characteristic

Computer (microseconds) per call per call (see below)

ALGOL 60

B6700 41.2 16 13 ND2VO

B5500 Mk XV.l.01 135 19.5 7 NL2VO

EMAS 4/75 46.7 21 18 ND2VO

1906A Manchester 29.2 33.5 30 ND2VR

KDF9 Mk2 532 68.5 10 CD2VR

1906S XALV 70.9 (120) 13 CD2TR

370/165 Delft 43.8 (142) ? CD2TR

NU 1108 175 (175) 9 CD2TR

ALGOL W

360/67 Mk2 121 (74) (16-45) HD2TR

IMP

ICL 4/75 46 17.5 18 ND2VO

SIMULA

1108 120 (120) 9 HD2TR

DEC1O(KI1O) 317 (158) ? HD2TR

CYSEN 74 380 (800) (15) HD2TR

ALGOL 68

1907F (no heap) 134 28 15 NO2VO

1907F (heap) 167 34 15 HD2VR

COC 6400(subset) 45.3 51 ? HD2VO

Cyber 73 vl.0.8 67.8 (60) 7 HD2VR

Bliss 10

DEClO(KAlO) 53.15 15 5 NLWVR

PL/I

360/65 OPT v1.2.2 101 (61) 68 HD2AO

360/65 F v5.4 351 (212) (70) HD2AR

PASCAL

1906S 19.1 32.5 11 HDWVR

COC 6400 34 38.5 6 HDWVO

370/158 39 42.5 30 HDWVE

RTL/2

4/70 46 14.5 14 NLWVO

PDP11/20 (107) 30.5 ? CLWVH

PALGOL

PDP11/20 (46) 13 3 NLWVO

Bliss/11

POP11/20 OPT 31 8 2 NLWVO

MARY

SM4 105 30.5 9 COWVR

CORAL 66

MOD 1 (21) 15.5 3 NLWVO

PL516

DDP516 84.5 37 2 CLWVH

C (UNIX)

POP 11/45 50.4 26 ? NLWVR

BCPL

370/165 5.9 19 9 NLWVR

POP 11/45 48 20.5 7 NLWVO

MOO 1 (35) 25 7 NLWVR

Machine code

Most machines ? 5-14 1-2 NLWVO

4

7 Factors influencing the execution speed

Factors influencing the call of a recursive procedure vary from inherent problems
with the architecture of the machine to purely software problems on the design of
the procedure calling mechanism. Against each of the results above is a sequence
of letters and digits which describes the principle characteristics governing the ex-
ecution performance.

Recursion. On most modern machines with a few base registers and indexing
facilities, the basic overhead of recursion is very small indeed. A few mini-
computers do not have adequate base registers or addressing facilities to sup-
port recursion. The Honeywell DDP5l6 is of this type, hence with the high-
level assembler PL516 stacking must be performed explicitly. On some ma-
chines, although the addressing logic is available an additional time penalty oc-
curs by addressing via pointers. On the Modular 1 implementation of CORAL
66, recursion is an option. In fact the code produced with recursion is more
efficient than that without recursion. The reason for this is that the short
address length of the Modular 1 means that base registers must be loaded to
access the variables of another procedure. This is a larger overhead than that
incurred using a single stack register which only needs to he incremented and
decremented by a small amount. Without recursion, the number of instruc-
tions is increased to 19.5 (30% more).

Storage allocation. In order to execute this program, a stack storage scheme is
necessary. It is sometimes possible on conventional hardware to use an area
in the store as stack without performing an explicit software check for stack
overflow. One can then rely upon a hardware address violation which should
permit the output of a suitable diagnostic. Such systems are marked by an
N, whereas C denotes a software stack overflow check. Languages such as AL-
GOL 68, PL/I and SIMULA require more than a simple stack and hence must
perform an overflow check in a manner which allows a recovery to perform
some garbage collection. Systems like this arc marked with an H. PASCAL
permits additional storage apart from the stack but without garbage collec-
tion. Although no garbage collection is involved, PASCAL is marked with an
H. Only SIMULA requires an actual garbage collection during the execution of
this test. The method used to administer the stack is partly a matter of lan-
guage design and partly a matter of implementation. For instance, although
ALGOL 68 requires a heap, the ALGOL 68-R implementation will run a stack
only if the program does not require the heap. The difference, shown above,
is that an additional subroutine is called on procedure entry to check that
adequate stack space is available.

Complete display. Block structured languages in general require a base pointer
for every block whose variables can be accessed at the relevant part of the
program. This facility is marked with a D. Languages such as BCPL and
Burroughs B5500 ALGOL restrict access to local and global identifiers only,
permitting a significant economy in pointers. These languages are marked
with an L. The actual method of implementing the display can vary inde-
pendently of the language. For instance, ALGOL W and IMP have every
base pointer in a register, the PASCAL implementations above backchain the
display (from the local procedure) and ALGOL 68-R keeps a copy in core of
the full display in the local block. In almost all cases, there will be small
variations in the calling overhead depending upon the relevant positions (in
the display) of the call and the procedure.

5

Dynamic stack storage. In ALGOL 60, the sizes of arrays are not, in general,
known until program execution. This facility, implemented with second order
working store, requires a small overhead on the administration of stack storage
even when no arrays are being used, as in this test. Languages requiring such
storage are marked with a 2 whereas systems allowing only storage whose size
can be determined at compile time are marked with a W. PALGOL and RTL/2
are LW languages and hence require only one stack pointer (and one pointer
for static storage depending upon the addressing structure).

Parameter handling. The most expensive mechanism is marked with a T which
denotes a ‘thunk’ that is required to implement the ALGOL 60 call by name
[4]. A thunk can be avoided with this test by performing all parameter check-
ing at compile time and using only the value mechanism (V). The KDF9,
B5500 and Atlas ALGOL compilers all use the value mechanism. The use
of the thunk mechanism by the other ALGOL 60 compilers is caused by the
problem of handling the call of formal procedures whose parameters cannot
be specified [3]. With value parameters, the ICL 1900 ALGOL compiler uses
a simplified thunk mechanism but the Manchester ALGOL compiler uses the
value mechanism. The PL/I systems use call by address which is marked
with an A. With recursion, the addresses of parameters are dynamic and in
consequence this method is less efficient than call by value.

Open code or subroutines. Systems which handle this test entirely by open
code are marked with an O, whereas the use of subroutines is marked with
an R. The PL/I optimising compiler generates a subroutine call, but it is not
invoked unless insufficient stack space is given (which did not happen in this
case).

8 Conclusion.

Ackermann’s function provides a simple method of comparing the efficiency of the
procedure calling mechanism of a language permitting recursion. The results show
a very wide variation in performance even for languages containing no inherent
complications. Additional instructions required in ALGOL 68, PL/I and PASCAL
to check for stack overflow are quite insignificant compared to the hundreds of extra
instructions executed by the inefficient implementations of ALGOL 60. There is no
doubt that ‘System Implementation Languages’ give very much better results on
this test without reducing the facilities to the programmer. Machine independence
seems to be realised in this case without any measurable cost as BCPL shows.

Does Ackermann s function represent a good test for a system implementation
language? Unfortunately no statistical information is available to the author on the
use of procedures in operating systems and compilers etc. Hence it is not known
if, for instance, two parameters is typical. The large amount of stack space used is
certainly not typical and can result in pathological situations. For instance, stack
space is claimed in 64 word units under George 3 on a 1906A, but is not released.
Hence during the first part of the algorithm when the stack is being increased a
large operating system overhead occurs. During the second part when the stack
is rarely increased beyond its previous maximum, there is no significant overhead.
The computational part of testing for the equality with zero, jumping and adding
or subtracting one seems very typical of non-numeric work. On the 360 computer,
the fact that the the algorithm is very short (<4K bytes) results in a small saving,
but on the IMP compiler which can take advantage of this the speed was only the
increased by 3%.

6

From the better figures produced by system implementation languages, the code
for Ackermann is roughly divided as follows:

instructions
subroutine entry and exit 2
stacking return address 1
setting up environment 3

checking for stack overflow 2 (if check made)
restoring old environment 3

(on procedure exit)
setting parameters 2× 1 = 2
body of Ackermann 8

Total 21

9 Acknowledgements

This work has been inspired by the International Federation for Information Pro-
cessing Working Group 2.4. The desire of the group to obtain information on the
performance of system implementation languages has led to tests such as this. It
would not have been possible to write this paper without the active help of the
following persons in running the test: — Mr. L. Ammeraal (Mini-ALGOL 68), Dr
R. Backhouse (B5500), Dr J. G. P. Barnes (RTL/2), Dr D. A. Bell (PL516), Dr
H. Boom (Cyber 73 ALGOL 68), Mr P. Klint (C-UNIX), Mr R. Conradi (MARY,
CYBER 74, 1108, CDC3300), Mr W. Findlay (PASCAL 1906A & machine code),
Mr W. B. Foulkes (PASCAL 370/158). Professor G. Goos (B6700), Mr. V. Hath-
way (BCPL MOD 1), Mr M. Healey (PL/I OPT), Professor J. J. Horning (Sue 11),
Mr B. Jones (ALGOL 60, Dclft 370/165), Dr M. MeKeag (PASCAL & ALGOL 60,
1906S), Mr Z. Mocsi (R10), Dr J. Palme (DEC10 SIMULA & machine code), Mr
M.J. Parsons (PALGOL), Dr M. Richards (BCPL), Professor J. S. Rohl (Manch-
ester 1900 ALGOL), Mr P. D. Stephens (IMP), Dr P. Wetherall (ALGOL 68-R),
Professor N. Wirth (PASCAL), Professor D. B. Wortman (370/165 machine code)
and Professor W. A. Wulf (Bliss 10, Bliss 11 & machine code).

References

[1] Y. Sundblad, The Ackermann function. A theoretical, computational and for-
mula manipulative study. BIT 11 (1971), 107119.

[2] Central Computer Agency, A comparison of computer speeds using mixes of
instructions. Technical Support Unit, Note 3806, (1971).

[3] B. A. Wichmann, ALGOL 60 Compilation and Assessment, Academic Press,
London, (1973).

[4] P. Z. Ingerman, Thunks — A way of compiling procedure statement with some
comments on procedure declarations, Comm ACM. 4, (1961), 5558.

[5] B. J. Cornelius and G.H. Kirby, Depth of recursion and the Ackermann func-
tion, BIT 15 (1975), 144150.

7

	Introduction
	Ackermann's function
	Program listing
	Properties of the algorithm
	Notes on the results
	Results
	Factors influencing the execution speed
	Conclusion.
	Acknowledgements

